Obinna Okolie , Nadimul Haque Faisal , Harvey Jamieson , Arindam Mukherji , James Njuguna
{"title":"Structural integrity and failure mechanisms of thermoplastic composite pipes for offshore applications: Insights from compressive and flexural testing","authors":"Obinna Okolie , Nadimul Haque Faisal , Harvey Jamieson , Arindam Mukherji , James Njuguna","doi":"10.1016/j.engfailanal.2025.109775","DOIUrl":null,"url":null,"abstract":"<div><div>This research investigates the structural integrity and mechanical behaviour of a thermoplastic composite pipe (TCP) that is particularly used in the offshore energy industry. The TCP offers enhanced strength and high strength-to-weight ratio ideal for applications subject to varying loading conditions. Despite its structural benefits, the composite pipe is susceptible to delamination and other damage modes that compromise its performance. This study addresses the limited research on thermoplastic curved composite structures, especially in the context of debonding and stress distribution, by focusing on the behaviour of the TCP under compressive and flexural loading conditions. Non-destructive testing (NDT) methods, including X-ray computed tomography (XCT) and ultrasonic inspection, are employed to characterize internal damage mechanisms from these tests such as microcracking, fibre breakage, and matrix deformation at a microstructural level. Flexural testing indicates that failure initiates through tensile cracks in the outer layers, while compression testing reveals progressive damage through delamination, matrix degradation, and fibre buckling. The pipe stiffness and elastic modulus were ascertained to be 2184.2 MPa and 13.18GPa respectively. Microstructural analyses of compressive failure further reveal the complex failure pathways. This shows that matrix cracking and delamination are primary failure mechanisms driven by the polymer matrix’s limited fracture toughness and the complex stress interactions within the laminate. Delamination and matrix cracking are localized yet progressive, exacerbating the fibre to matrix separation which impact load-bearing capacity of the pipe. These findings underscore the importance of optimizing fibre orientation, matrix-fibre adhesion, and layer configuration to enhance structural toughness. This comprehensive evaluation of mechanical performance and failure mechanisms provides valuable insights for optimizing the manufacturing processes of TCP, aiming to improve durability, reduce material waste, and enhance long-term reliability in demanding service environments.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"179 ","pages":"Article 109775"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630725005163","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This research investigates the structural integrity and mechanical behaviour of a thermoplastic composite pipe (TCP) that is particularly used in the offshore energy industry. The TCP offers enhanced strength and high strength-to-weight ratio ideal for applications subject to varying loading conditions. Despite its structural benefits, the composite pipe is susceptible to delamination and other damage modes that compromise its performance. This study addresses the limited research on thermoplastic curved composite structures, especially in the context of debonding and stress distribution, by focusing on the behaviour of the TCP under compressive and flexural loading conditions. Non-destructive testing (NDT) methods, including X-ray computed tomography (XCT) and ultrasonic inspection, are employed to characterize internal damage mechanisms from these tests such as microcracking, fibre breakage, and matrix deformation at a microstructural level. Flexural testing indicates that failure initiates through tensile cracks in the outer layers, while compression testing reveals progressive damage through delamination, matrix degradation, and fibre buckling. The pipe stiffness and elastic modulus were ascertained to be 2184.2 MPa and 13.18GPa respectively. Microstructural analyses of compressive failure further reveal the complex failure pathways. This shows that matrix cracking and delamination are primary failure mechanisms driven by the polymer matrix’s limited fracture toughness and the complex stress interactions within the laminate. Delamination and matrix cracking are localized yet progressive, exacerbating the fibre to matrix separation which impact load-bearing capacity of the pipe. These findings underscore the importance of optimizing fibre orientation, matrix-fibre adhesion, and layer configuration to enhance structural toughness. This comprehensive evaluation of mechanical performance and failure mechanisms provides valuable insights for optimizing the manufacturing processes of TCP, aiming to improve durability, reduce material waste, and enhance long-term reliability in demanding service environments.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.