Combination of Astragalus−Salvia and Ophiopogon−Dendrobium herb pairs alleviates Sjögren’s Syndrome via inhibiting the JAK1/STAT3 and PI3K/AKT pathways in NOD/Ltj mice
Peng Sun , Lili Zhu , Yang Yu , Sijing Hu , Mengyi Shan , Xuan Zhao , Xinchang Wang , Qiaoyan Zhang , Luping Qin
{"title":"Combination of Astragalus−Salvia and Ophiopogon−Dendrobium herb pairs alleviates Sjögren’s Syndrome via inhibiting the JAK1/STAT3 and PI3K/AKT pathways in NOD/Ltj mice","authors":"Peng Sun , Lili Zhu , Yang Yu , Sijing Hu , Mengyi Shan , Xuan Zhao , Xinchang Wang , Qiaoyan Zhang , Luping Qin","doi":"10.1016/S1875-5364(25)60892-2","DOIUrl":null,"url":null,"abstract":"<div><div>Sjögren’s syndrome (SS) is an autoimmune disease characterized primarily by oral and periocular dryness. <em>Astragalus-Salvia</em> (AS) and <em>Ophiopogon</em>-<em>Dendrobium</em> (OD) represent two frequently utilized herb pairs in SS treatment. While the combination of AS-OD herb pairs demonstrates clinical efficacy in alleviating SS symptoms, its underlying mechanism remains unclear. This investigation sought to assess the therapeutic effects and elucidate the potential mechanisms of AS-OD in non-obese diabetic (NOD)/Ltj mice with SS. The study utilized NOD/Ltj mice as SS models, administering AS-OD treatment for 10 weeks at doses of 113.1, 226.2, and 339.3 mg·d<sup>−1</sup>·20 g<sup>−1</sup>. Results demonstrated that AS-OD improved SS symptoms, evidenced by enhanced salivary flow rate, decreased anti-SSA/Ro and anti-SSB/La antibody levels, increased swimming duration, and reduced lactate (LA) and blood urea nitrogen (BUN) levels in NOD/Ltj mice. AS-OD reduced lymphocyte infiltration, enhanced Aquaporin-5 (AQP5) expression in the submandibular gland, decreased inflammatory cytokine levels in the submandibular gland, and reduced the T helper type 17/regulatory T lymphocyte (Th17/Treg) cell ratio in the spleen. Transcriptomic and proteomic analyses indicated AS-OD’s involvement in regulating phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and Janus kinase 3/signal transducer and activator of transcription 3 (JAK1/STAT3) pathways, with inhibitory effects validated in both NOD/Ltj mice submandibular gland and A-253 cells. Furthermore, AS-OD enhanced cell viability and reduced A-253 cell apoptosis through the PI3K/AKT pathway. In A-253 cells, AS-OD reduced inflammatory cytokine levels, CXC chemokine ligand 9/10 (CXCL9/10), and T-cell chemotaxis by inhibiting the JAK1/STAT3 pathway. AS-OD mitigates SS by suppressing inflammation and immune responses through the PI3K/AKT and JAK1/STAT3 pathways.</div></div>","PeriodicalId":10002,"journal":{"name":"Chinese Journal of Natural Medicines","volume":"23 6","pages":"Pages 733-741"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Natural Medicines","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875536425608922","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Sjögren’s syndrome (SS) is an autoimmune disease characterized primarily by oral and periocular dryness. Astragalus-Salvia (AS) and Ophiopogon-Dendrobium (OD) represent two frequently utilized herb pairs in SS treatment. While the combination of AS-OD herb pairs demonstrates clinical efficacy in alleviating SS symptoms, its underlying mechanism remains unclear. This investigation sought to assess the therapeutic effects and elucidate the potential mechanisms of AS-OD in non-obese diabetic (NOD)/Ltj mice with SS. The study utilized NOD/Ltj mice as SS models, administering AS-OD treatment for 10 weeks at doses of 113.1, 226.2, and 339.3 mg·d−1·20 g−1. Results demonstrated that AS-OD improved SS symptoms, evidenced by enhanced salivary flow rate, decreased anti-SSA/Ro and anti-SSB/La antibody levels, increased swimming duration, and reduced lactate (LA) and blood urea nitrogen (BUN) levels in NOD/Ltj mice. AS-OD reduced lymphocyte infiltration, enhanced Aquaporin-5 (AQP5) expression in the submandibular gland, decreased inflammatory cytokine levels in the submandibular gland, and reduced the T helper type 17/regulatory T lymphocyte (Th17/Treg) cell ratio in the spleen. Transcriptomic and proteomic analyses indicated AS-OD’s involvement in regulating phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and Janus kinase 3/signal transducer and activator of transcription 3 (JAK1/STAT3) pathways, with inhibitory effects validated in both NOD/Ltj mice submandibular gland and A-253 cells. Furthermore, AS-OD enhanced cell viability and reduced A-253 cell apoptosis through the PI3K/AKT pathway. In A-253 cells, AS-OD reduced inflammatory cytokine levels, CXC chemokine ligand 9/10 (CXCL9/10), and T-cell chemotaxis by inhibiting the JAK1/STAT3 pathway. AS-OD mitigates SS by suppressing inflammation and immune responses through the PI3K/AKT and JAK1/STAT3 pathways.
期刊介绍:
The Chinese Journal of Natural Medicines (CJNM), founded and sponsored in May 2003 by China Pharmaceutical University and the Chinese Pharmaceutical Association, is devoted to communication among pharmaceutical and medical scientists interested in the advancement of Traditional Chinese Medicines (TCM). CJNM publishes articles relating to a broad spectrum of bioactive natural products, leading compounds and medicines derived from Traditional Chinese Medicines (TCM).
Topics covered by the journal are: Resources of Traditional Chinese Medicines; Interaction and complexity of prescription; Natural Products Chemistry (including structure modification, semi-and total synthesis, bio-transformation); Pharmacology of natural products and prescription (including pharmacokinetics and toxicology); Pharmaceutics and Analytical Methods of natural products.