{"title":"Convex wrapping description of biarticular hip muscles for patient-specific musculoskeletal modeling","authors":"Yanbing Wang , Jianqiao Guo , Hao Tang , Qiang Tian","doi":"10.1016/j.jbiomech.2025.112802","DOIUrl":null,"url":null,"abstract":"<div><div>Determination of hip muscle paths and their moment arms is crucial in subject-specific musculoskeletal modeling. Existing approaches, including via-point, obstacle-set, and others, cannot estimate a smooth path for biarticular muscles such as iliopsoas. This study proposed a modified convex wrapping algorithm based on subject-specific medical imaging to prevent the predicted path from penetrating its underlying bone geometries. Muscle attachment points were automatically personalized using the point cloud registration method. The muscle path was then defined as the shortest path wrapped over the convex hull and searched via Dijkstra’s algorithm. Moreover, a constraint plane for preventing muscle–bone penetration was obtained using the point cloud of the underlying bone. The results of the identified iliopsoas path were compared with the conventional via-point method, revealing that the proposed algorithm can overcome the shortcoming of path non-smoothness via-point paths with certain hip postures. The obtained moment arms were further validated using the magnetic-resonance-imaging-based measurement from the literature, corroborating its applications in musculoskeletal modeling and quantitative surgical planning.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"189 ","pages":"Article 112802"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025003148","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Determination of hip muscle paths and their moment arms is crucial in subject-specific musculoskeletal modeling. Existing approaches, including via-point, obstacle-set, and others, cannot estimate a smooth path for biarticular muscles such as iliopsoas. This study proposed a modified convex wrapping algorithm based on subject-specific medical imaging to prevent the predicted path from penetrating its underlying bone geometries. Muscle attachment points were automatically personalized using the point cloud registration method. The muscle path was then defined as the shortest path wrapped over the convex hull and searched via Dijkstra’s algorithm. Moreover, a constraint plane for preventing muscle–bone penetration was obtained using the point cloud of the underlying bone. The results of the identified iliopsoas path were compared with the conventional via-point method, revealing that the proposed algorithm can overcome the shortcoming of path non-smoothness via-point paths with certain hip postures. The obtained moment arms were further validated using the magnetic-resonance-imaging-based measurement from the literature, corroborating its applications in musculoskeletal modeling and quantitative surgical planning.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.