An enhanced Artificial Neural Network approach for solving nonlinear fractional-order differential equations

Q1 Mathematics
Nikhil Sharma , Sunil Joshi , Pranay Goswami
{"title":"An enhanced Artificial Neural Network approach for solving nonlinear fractional-order differential equations","authors":"Nikhil Sharma ,&nbsp;Sunil Joshi ,&nbsp;Pranay Goswami","doi":"10.1016/j.padiff.2025.101230","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a hybrid Chebyshev Collocation Method (CCM) and Artificial Neural Network (ANN) approach to address the computational challenges of nonlinear Caputo fractional differential equations. The purpose is to improve accuracy for static solutions by approximating the fractional derivative spatially. The methodology leverages CCM for spatial discretization and ANN for residual minimization, achieving low MSEs (e.g., <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></math></span>) in three examples. The findings confirm improved convergence with increasing node count, with implications for efficient fractional PDE solvers. The novelty lies in the static CCM+ANN integration, offering a practical alternative to dynamic methods.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101230"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a hybrid Chebyshev Collocation Method (CCM) and Artificial Neural Network (ANN) approach to address the computational challenges of nonlinear Caputo fractional differential equations. The purpose is to improve accuracy for static solutions by approximating the fractional derivative spatially. The methodology leverages CCM for spatial discretization and ANN for residual minimization, achieving low MSEs (e.g., 105) in three examples. The findings confirm improved convergence with increasing node count, with implications for efficient fractional PDE solvers. The novelty lies in the static CCM+ANN integration, offering a practical alternative to dynamic methods.
求解非线性分数阶微分方程的增强人工神经网络方法
本文介绍了一种混合Chebyshev配置法(CCM)和人工神经网络(ANN)方法来解决非线性Caputo分数阶微分方程的计算难题。目的是通过在空间上近似分数阶导数来提高静态解的精度。该方法利用CCM进行空间离散化,利用ANN进行残差最小化,在三个示例中实现了低mse(例如10−5)。研究结果证实,随着节点数的增加,收敛性得到改善,这对有效的分数阶PDE求解器具有重要意义。新颖之处在于静态CCM+ANN集成,为动态方法提供了一种实用的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信