Nikoloz Tsikolia , Dinh Thach Lam Nguyen , Yee Han Tee
{"title":"Mechanisms of left–right symmetry breaking across scales","authors":"Nikoloz Tsikolia , Dinh Thach Lam Nguyen , Yee Han Tee","doi":"10.1016/j.ceb.2025.102564","DOIUrl":null,"url":null,"abstract":"<div><div>Establishment of left–right (LR) asymmetry relies on a multistep interplay of molecular signaling and physical processes. Initial LR symmetry breaking in several model vertebrates was shown to take place at the LR organizer (LRO) where chiral rotation of monocilia produces a leftward fluid flow. Subsequent bending of sensory cilia triggers Pkd2-channel–mediated calcium transients which in turn are required for induction of asymmetrical signaling upstream of morphological asymmetries, emphasizing the role of mechanosensation in flow detection. Crucially, unidirectional flow and its detection were suggested to require cellular-scale asymmetries including planar cell polarity–mediated posterior position and ultrastructural chirality of motile cilia as well as asymmetric Pkd2 localization within sensory cilia. Alternative mechanisms of LR symmetry breaking operate in models like the chick embryo, where asymmetry of gene expression is preceded by leftward primitive node rotation suggesting mechanisms based on cytoskeletal chirality known from invertebrate models including <em>Caenorhabditis elegans</em> and fruit fly. Investigation of chirality at the cellular level suggests that chirality of components of cytoskeleton, particularly actin filaments, is amplified by distinct modules based i.e. on formin-actin and myosin-actin interactions which drive intracellular swirling and cortical flow, providing a basis for LR asymmetry. Cellular chirality can organize LR asymmetry of multicellular behavior as observed in the chiral alignment of fibroblasts. The integration of molecular, cellular, and tissue-scale chirality highlights conserved and divergent mechanisms underpinning LR symmetry breaking across species. Unraveling these processes may illuminate pathways connecting cytoskeletal dynamics to organismal asymmetry, offering insights into development and evolution.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"95 ","pages":"Article 102564"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067425001024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Establishment of left–right (LR) asymmetry relies on a multistep interplay of molecular signaling and physical processes. Initial LR symmetry breaking in several model vertebrates was shown to take place at the LR organizer (LRO) where chiral rotation of monocilia produces a leftward fluid flow. Subsequent bending of sensory cilia triggers Pkd2-channel–mediated calcium transients which in turn are required for induction of asymmetrical signaling upstream of morphological asymmetries, emphasizing the role of mechanosensation in flow detection. Crucially, unidirectional flow and its detection were suggested to require cellular-scale asymmetries including planar cell polarity–mediated posterior position and ultrastructural chirality of motile cilia as well as asymmetric Pkd2 localization within sensory cilia. Alternative mechanisms of LR symmetry breaking operate in models like the chick embryo, where asymmetry of gene expression is preceded by leftward primitive node rotation suggesting mechanisms based on cytoskeletal chirality known from invertebrate models including Caenorhabditis elegans and fruit fly. Investigation of chirality at the cellular level suggests that chirality of components of cytoskeleton, particularly actin filaments, is amplified by distinct modules based i.e. on formin-actin and myosin-actin interactions which drive intracellular swirling and cortical flow, providing a basis for LR asymmetry. Cellular chirality can organize LR asymmetry of multicellular behavior as observed in the chiral alignment of fibroblasts. The integration of molecular, cellular, and tissue-scale chirality highlights conserved and divergent mechanisms underpinning LR symmetry breaking across species. Unraveling these processes may illuminate pathways connecting cytoskeletal dynamics to organismal asymmetry, offering insights into development and evolution.
期刊介绍:
Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings.
COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.