Estimation of spatiotemporally varying parameters for grid-based distributed hydrologic models

IF 4.7 2区 地球科学 Q1 WATER RESOURCES
Xiaojing Zhang , Pan Liu , Kang Xie , Weibo Liu , Lele Deng , Huan Xu , Qian Cheng , Liting Zhou
{"title":"Estimation of spatiotemporally varying parameters for grid-based distributed hydrologic models","authors":"Xiaojing Zhang ,&nbsp;Pan Liu ,&nbsp;Kang Xie ,&nbsp;Weibo Liu ,&nbsp;Lele Deng ,&nbsp;Huan Xu ,&nbsp;Qian Cheng ,&nbsp;Liting Zhou","doi":"10.1016/j.ejrh.2025.102536","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>Xiangjiang and Baihe River basins, China.</div></div><div><h3>Study focus</h3><div>Hydrologic models often use either time-varying or spatially heterogeneous parameter methods to improve runoff simulations. However, few methods account for both dimensions simultaneously, limiting model accuracy and reducing insight into the effects of climate change and human activities on rainfall-runoff relationships. To fill this gap, a spatiotemporally varying parameter estimation method, DAKG-SWD-DP, is proposed here. This method involves three steps: (1) division of the dataset into sub-periods using a sliding window-based split-sample calibration (SWD-SSC) method; (2) calibration of spatially heterogeneous parameters for each sub-period using a dimension-adaptive key grid (DAKG) strategy; and (3) optimization of spatiotemporal parameter variations through dynamic programming to consider both simulation accuracy and parameter continuity.</div></div><div><h3>New hydrological insights for the region</h3><div>(1) the DAKG-SWD-DP method significantly improves runoff simulation compared to the constant parameter, DAKG, and SWD-SSC methods. Specifically, the NSE increases by 0.05 in the Xiangjiang River basin and 0.09 in the Baihe River basin compared to the constant parameter method; (2) the DAKG-SWD-DP method outperforms the DAKG-SWD method in capturing the relationships between hydrologic parameters and environmental factors, due to enhanced parameter continuity. Additionally, the DAKG-SWD-DP method efficiently identifies climatic factors as key drivers of parameter variations in both basins, while human activities, such as reservoir construction, are also key drivers in the Baihe River basin.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"60 ","pages":"Article 102536"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825003611","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Study region

Xiangjiang and Baihe River basins, China.

Study focus

Hydrologic models often use either time-varying or spatially heterogeneous parameter methods to improve runoff simulations. However, few methods account for both dimensions simultaneously, limiting model accuracy and reducing insight into the effects of climate change and human activities on rainfall-runoff relationships. To fill this gap, a spatiotemporally varying parameter estimation method, DAKG-SWD-DP, is proposed here. This method involves three steps: (1) division of the dataset into sub-periods using a sliding window-based split-sample calibration (SWD-SSC) method; (2) calibration of spatially heterogeneous parameters for each sub-period using a dimension-adaptive key grid (DAKG) strategy; and (3) optimization of spatiotemporal parameter variations through dynamic programming to consider both simulation accuracy and parameter continuity.

New hydrological insights for the region

(1) the DAKG-SWD-DP method significantly improves runoff simulation compared to the constant parameter, DAKG, and SWD-SSC methods. Specifically, the NSE increases by 0.05 in the Xiangjiang River basin and 0.09 in the Baihe River basin compared to the constant parameter method; (2) the DAKG-SWD-DP method outperforms the DAKG-SWD method in capturing the relationships between hydrologic parameters and environmental factors, due to enhanced parameter continuity. Additionally, the DAKG-SWD-DP method efficiently identifies climatic factors as key drivers of parameter variations in both basins, while human activities, such as reservoir construction, are also key drivers in the Baihe River basin.
基于网格的分布式水文模型时空变化参数估算
研究区域:中国湘江、白河流域。研究重点水文模型通常使用时变或空间非均质参数方法来改进径流模拟。然而,很少有方法同时考虑这两个维度,这限制了模型的准确性,并降低了对气候变化和人类活动对降雨-径流关系影响的认识。为了填补这一空白,本文提出了一种时空变化参数估计方法——DAKG-SWD-DP。该方法包括三个步骤:(1)使用基于滑动窗口的分割样本校准(SWD-SSC)方法将数据集划分为子周期;(2)采用维度自适应关键网格(DAKG)策略对各子周期的空间异质性参数进行定标;(3)同时考虑仿真精度和参数连续性,通过动态规划优化时空参数变化。(1)与恒定参数、DAKG和SWD-SSC方法相比,DAKG- swd - dp方法显著改善了径流模拟。其中,湘江流域和白河流域的NSE分别比常参数法增大0.05和0.09;(2)由于参数的连续性增强,DAKG-SWD- dp方法在捕获水文参数与环境因子之间的关系方面优于DAKG-SWD方法。此外,DAKG-SWD-DP方法有效地识别了气候因子是两个流域参数变化的关键驱动因素,而人类活动(如水库建设)也是白河流域参数变化的关键驱动因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信