Impact of axial electric and inclined magnetic fields on tri-hybrid nanofluid through an electroosmotic flexible pump for biomedical microfluidic devices

IF 3.8 Q2 CHEMISTRY, PHYSICAL
Syed Modassir Hussain , Umair Khan , Adebowale Martins Obalalu
{"title":"Impact of axial electric and inclined magnetic fields on tri-hybrid nanofluid through an electroosmotic flexible pump for biomedical microfluidic devices","authors":"Syed Modassir Hussain ,&nbsp;Umair Khan ,&nbsp;Adebowale Martins Obalalu","doi":"10.1016/j.chphi.2025.100902","DOIUrl":null,"url":null,"abstract":"<div><div>The advancement of microfluidic technology has opened new frontiers in biomedical applications, necessitating efficient fluid transport mechanisms at microscale dimensions. Among various techniques, electroosmotic pumping stands out due to its ability to provide precise and non-mechanical fluid control, which is crucial for lab-on-chip and organ-on-chip devices. However, optimizing flow characteristics in such systems remains a significant challenge, especially when employing advanced working fluids like tri-hybrid nanofluids. This study investigates the influence of axial electric and inclined magnetic fields on the behavior of a tri-hybrid nanofluid (comprising aluminum oxide (Al₂O₃), molybdenum disulfide (<span><math><mrow><mtext>Mo</mtext><msub><mi>S</mi><mn>2</mn></msub></mrow></math></span>), copper (<span><math><mtext>Cu</mtext></math></span>) nanoparticles) in an electroosmotic flexible microchannel pump. The influence of an inclined magnetic field and thermal radiation on cilia‑modulated slip flow is explored. The flow is assumed to be a two-dimensional, unsteady pumping motion influenced by an axially applied electric field. The Chebyshev Collocation Spectral Method (CCSM) is employed to solve the governing equations numerically with the help of the MATHEMATICA software. Results reveal that the ternary-hybrid nanofluid (THNFs) exhibit 11 % greater thermal transport efficiency than hybrid nanofluids and mono nanofluids, indicating their greater thermal performance. Furthermore, the combined effects of ohmic heating and electroosmotic parameters significantly enhance the fluid temperature. These outcomes highlight the significance of THNFs in increasing thermal transport efficiency in micro/nanofluidic devices.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100902"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266702242500088X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of microfluidic technology has opened new frontiers in biomedical applications, necessitating efficient fluid transport mechanisms at microscale dimensions. Among various techniques, electroosmotic pumping stands out due to its ability to provide precise and non-mechanical fluid control, which is crucial for lab-on-chip and organ-on-chip devices. However, optimizing flow characteristics in such systems remains a significant challenge, especially when employing advanced working fluids like tri-hybrid nanofluids. This study investigates the influence of axial electric and inclined magnetic fields on the behavior of a tri-hybrid nanofluid (comprising aluminum oxide (Al₂O₃), molybdenum disulfide (MoS2), copper (Cu) nanoparticles) in an electroosmotic flexible microchannel pump. The influence of an inclined magnetic field and thermal radiation on cilia‑modulated slip flow is explored. The flow is assumed to be a two-dimensional, unsteady pumping motion influenced by an axially applied electric field. The Chebyshev Collocation Spectral Method (CCSM) is employed to solve the governing equations numerically with the help of the MATHEMATICA software. Results reveal that the ternary-hybrid nanofluid (THNFs) exhibit 11 % greater thermal transport efficiency than hybrid nanofluids and mono nanofluids, indicating their greater thermal performance. Furthermore, the combined effects of ohmic heating and electroosmotic parameters significantly enhance the fluid temperature. These outcomes highlight the significance of THNFs in increasing thermal transport efficiency in micro/nanofluidic devices.
通过电渗透柔性泵研究轴向电场和倾斜磁场对三杂化纳米流体的影响
微流体技术的进步开辟了生物医学应用的新领域,需要在微观尺度上有效的流体输送机制。在各种技术中,电渗透泵因其提供精确和非机械流体控制的能力而脱颖而出,这对于芯片上的实验室和芯片上的器官设备至关重要。然而,优化此类系统的流动特性仍然是一个重大挑战,特别是在采用三混合纳米流体等先进工作流体时。本研究研究了轴向电场和倾斜磁场对三杂化纳米流体(由氧化铝(Al₂O₃)、二硫化钼(MoS2)、铜(Cu)纳米颗粒组成)在电渗透柔性微通道泵中的行为的影响。探讨了倾斜磁场和热辐射对纤毛调制滑流的影响。假定流动是受轴向外加电场影响的二维非定常泵送运动。采用Chebyshev配置谱法(CCSM),借助MATHEMATICA软件对控制方程进行数值求解。结果表明,三元混合纳米流体(THNFs)的热传递效率比混合纳米流体和单纳米流体高11%,表明它们具有更好的热性能。此外,欧姆加热和电渗透参数的共同作用显著提高了流体温度。这些结果突出了THNFs在提高微/纳米流体器件热传输效率方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信