Microstructure and tribological performance of WC-Co cermet strengthened nickel alloy composite coatings manufactured by extreme high-speed laser cladding (EHLA)

IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS
Bruno F.A. Bezerra , Samuel Pinches , Hannah J. King , Shareen S.L. Chan , Ashok Meghwal , Sukhpreet Kaur , Colin Hall , Christopher C. Berndt , Andrew S.M. Ang
{"title":"Microstructure and tribological performance of WC-Co cermet strengthened nickel alloy composite coatings manufactured by extreme high-speed laser cladding (EHLA)","authors":"Bruno F.A. Bezerra ,&nbsp;Samuel Pinches ,&nbsp;Hannah J. King ,&nbsp;Shareen S.L. Chan ,&nbsp;Ashok Meghwal ,&nbsp;Sukhpreet Kaur ,&nbsp;Colin Hall ,&nbsp;Christopher C. Berndt ,&nbsp;Andrew S.M. Ang","doi":"10.1016/j.surfcoat.2025.132390","DOIUrl":null,"url":null,"abstract":"<div><div>Composite coatings composed of blended nickel alloy (IN625) and WC-Co cermet were applied via the extreme high-speed laser cladding (EHLA) process to investigate its feasibility as a coating replacement for hard chrome plating. A range of laser powers was investigated. These cermet coatings were benchmarked against an IN625-only coating, in the analysis of their macrostructure, microstructure, phase composition, Vickers microhardness and sliding wear resistance by the pin-on-disc test. The EHLA process resulted in crack-free coatings, with a good metallurgical bonding to the substrate and homogenous distribution of cermet particles within the coatings. The microhardness of the EHLA composite coatings increased by 81–102 % as compared to the IN625 EHLA coating. The wear rates of the composite coatings were only 0.5–1.4 % that of the IN625 coating, and only 1–4 % that of hard chrome coating. A decrease in laser power demonstrated an increase in the carbide-occupied cross-sectional area from 11.2 % to 17.2 %, which corresponded to a 64 % enhancement in wear resistance. This study highlights the critical balance required between laser power, carbide area fraction and microstructural characteristics, on the performance of EHLA-deposited composite coatings.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"512 ","pages":"Article 132390"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897225006644","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

Composite coatings composed of blended nickel alloy (IN625) and WC-Co cermet were applied via the extreme high-speed laser cladding (EHLA) process to investigate its feasibility as a coating replacement for hard chrome plating. A range of laser powers was investigated. These cermet coatings were benchmarked against an IN625-only coating, in the analysis of their macrostructure, microstructure, phase composition, Vickers microhardness and sliding wear resistance by the pin-on-disc test. The EHLA process resulted in crack-free coatings, with a good metallurgical bonding to the substrate and homogenous distribution of cermet particles within the coatings. The microhardness of the EHLA composite coatings increased by 81–102 % as compared to the IN625 EHLA coating. The wear rates of the composite coatings were only 0.5–1.4 % that of the IN625 coating, and only 1–4 % that of hard chrome coating. A decrease in laser power demonstrated an increase in the carbide-occupied cross-sectional area from 11.2 % to 17.2 %, which corresponded to a 64 % enhancement in wear resistance. This study highlights the critical balance required between laser power, carbide area fraction and microstructural characteristics, on the performance of EHLA-deposited composite coatings.
超高速激光熔覆WC-Co陶瓷强化镍合金复合涂层的显微组织和摩擦学性能
采用超高速激光熔覆(EHLA)工艺,对镍合金(IN625)与WC-Co金属陶瓷复合镀层进行了研究,探讨了其替代硬铬镀层的可行性。研究了激光功率的范围。通过销盘式测试,对这些陶瓷涂层的宏观组织、微观组织、相组成、维氏显微硬度和滑动耐磨性进行了分析,并与纯in625涂层进行了基准测试。EHLA工艺使涂层无裂纹,与基体有良好的冶金结合,涂层内金属陶瓷颗粒分布均匀。与IN625 EHLA涂层相比,EHLA复合涂层的显微硬度提高了81 ~ 102%。复合涂层的磨损率仅为IN625涂层的0.5 ~ 1.4%,硬铬涂层的1 ~ 4%。激光功率的降低表明,碳化物占据的横截面积从11.2%增加到17.2%,这相当于耐磨性提高了64%。该研究强调了激光功率、碳化物面积分数和微观结构特征之间的临界平衡对ehla沉积复合涂层性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surface & Coatings Technology
Surface & Coatings Technology 工程技术-材料科学:膜
CiteScore
10.00
自引率
11.10%
发文量
921
审稿时长
19 days
期刊介绍: Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance: A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting. B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信