{"title":"Deep learning-based fatigue monitoring of construction workers using physiological signals","authors":"Waleed Umer , Imran Mehmood , Yazan Qarout , Maxwell Fordjour Antwi-Afari , Shahnawaz Anwer","doi":"10.1016/j.autcon.2025.106356","DOIUrl":null,"url":null,"abstract":"<div><div>Construction workers often suffer from physical fatigue, leading to health issues, quality compromises, and accidents. Previous research on fatigue monitoring using physiological measures has three main limitations: inappropriate benchmarking with the Ratings of Perceived Exertion (RPE) scale, which poorly correlates with actual field fatigue; data collection in controlled settings; and ignoring the time-series nature of physiological signals. These issues question the applicability of such measures for monitoring fatigue on active job sites. This paper introduces an approach leveraging deep learning models and physiological data, using appropriate benchmarks and comprehensive on-site data collection. The approach was evaluated using metrics such as accuracy, precision, recall, specificity, and the F1 Score. Results showed models like Bi-LSTM achieved up to 98.5 % accuracy, validating the effectiveness of physiological signals. This paper contributes to automation in construction by developing deep learning models for fatigue monitoring that can automate safety-related concerns for construction workers and managers.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"177 ","pages":"Article 106356"},"PeriodicalIF":9.6000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525003966","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Construction workers often suffer from physical fatigue, leading to health issues, quality compromises, and accidents. Previous research on fatigue monitoring using physiological measures has three main limitations: inappropriate benchmarking with the Ratings of Perceived Exertion (RPE) scale, which poorly correlates with actual field fatigue; data collection in controlled settings; and ignoring the time-series nature of physiological signals. These issues question the applicability of such measures for monitoring fatigue on active job sites. This paper introduces an approach leveraging deep learning models and physiological data, using appropriate benchmarks and comprehensive on-site data collection. The approach was evaluated using metrics such as accuracy, precision, recall, specificity, and the F1 Score. Results showed models like Bi-LSTM achieved up to 98.5 % accuracy, validating the effectiveness of physiological signals. This paper contributes to automation in construction by developing deep learning models for fatigue monitoring that can automate safety-related concerns for construction workers and managers.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.