{"title":"Fabrication of Pt nanoparticles encapsulated by N, P co-doped carbon via solution plasma for the oxygen reduction reaction","authors":"Junzo Ukai , Pengfei Wang , Sangwoo Chae , Garbis Atam Akceoglu , Nutthira Pakkang , Yasuyuki Sawada , Nagahiro Saito","doi":"10.1016/j.jelechem.2025.119273","DOIUrl":null,"url":null,"abstract":"<div><div>The oxygen reduction reaction (ORR) remains a performance-limiting step in fuel cells due to sluggish kinetics and the high cost of platinum-based catalysts. In this study, we report the synthesis of nitrogen and phosphorus co-doped carbon (NPC) encapsulating Pt nanoparticles via a solution plasma process, aiming to reduce Pt usage while enhancing catalyst activity and durability. Structural characterization confirmed a core–shell morphology, with Pt cores uniformly embedded in a conductive, heteroatom-doped carbon shell. X-ray photoelectron spectroscopy revealed active nitrogen species (pyridinic and graphitic N) and P-doping contributing to electron redistribution and active site formation. Electrochemical tests in alkaline media demonstrated that the resulting NPC@Pt catalyst exhibits superior ORR activity, with a four-electron transfer pathway, higher limiting current density, and significantly improved long-term stability compared to commercial Pt/C. These findings highlight the synergy of heteroatom doping and core–shell structuring in advancing cost-effective, durable ORR electrocatalysts for alkaline fuel cells.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"994 ","pages":"Article 119273"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665725003479","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The oxygen reduction reaction (ORR) remains a performance-limiting step in fuel cells due to sluggish kinetics and the high cost of platinum-based catalysts. In this study, we report the synthesis of nitrogen and phosphorus co-doped carbon (NPC) encapsulating Pt nanoparticles via a solution plasma process, aiming to reduce Pt usage while enhancing catalyst activity and durability. Structural characterization confirmed a core–shell morphology, with Pt cores uniformly embedded in a conductive, heteroatom-doped carbon shell. X-ray photoelectron spectroscopy revealed active nitrogen species (pyridinic and graphitic N) and P-doping contributing to electron redistribution and active site formation. Electrochemical tests in alkaline media demonstrated that the resulting NPC@Pt catalyst exhibits superior ORR activity, with a four-electron transfer pathway, higher limiting current density, and significantly improved long-term stability compared to commercial Pt/C. These findings highlight the synergy of heteroatom doping and core–shell structuring in advancing cost-effective, durable ORR electrocatalysts for alkaline fuel cells.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.