Heqiang Du , Yawei Fan , Ruiqiang Ding , Zongxing Li , Liu Yongjie
{"title":"An integrated wind erosion model with nonphotosynthetic vegetation (NPV) based on remote sensing","authors":"Heqiang Du , Yawei Fan , Ruiqiang Ding , Zongxing Li , Liu Yongjie","doi":"10.1016/j.iswcr.2025.05.001","DOIUrl":null,"url":null,"abstract":"<div><div>Nonphotosynthetic vegetation (NPV) including dormant vegetation and plant residues plays important roles in wind erosion control. However, the effects of NPV on wind erosion have not been fully considered at regional scales, which led to large uncertainties in wind erosion simulations. With the development of NPV remote sensing technology and drag partition schemes, an integrated wind erosion model with nonphotosynthetic vegetation monitoring has become possible. Here, we integrated a wind erosion model and a NPV monitoring method and simulated wind erosion processes in the desert steppe (DS) of Inner Mongolia and the Mu Us Sandy Land (MU). After we nested NPV monitoring in the wind erosion model, an integrated model was developed, by which total vegetation cover and the corresponding frontal area were derived. Then, the aerodynamic parameters of the roughness elements were extracted using the Raupach drag partition scheme. The integrated model provided more accurate simulated wind erosion results compared to the original model, and the relative error of the simulated results by the integrated model was reduced by 61 %. NPV played an important role in wind erosion control, especially in non-growing seasons and in semi-arid regions. Finally, we discussed the potential uncertainties in wind erosion simulations induced by vegetation parameters. Our study provides a new insight into wind erosion simulations and the simulation results provide support for land conservation.</div></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"13 3","pages":"Pages 511-525"},"PeriodicalIF":7.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633925000413","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nonphotosynthetic vegetation (NPV) including dormant vegetation and plant residues plays important roles in wind erosion control. However, the effects of NPV on wind erosion have not been fully considered at regional scales, which led to large uncertainties in wind erosion simulations. With the development of NPV remote sensing technology and drag partition schemes, an integrated wind erosion model with nonphotosynthetic vegetation monitoring has become possible. Here, we integrated a wind erosion model and a NPV monitoring method and simulated wind erosion processes in the desert steppe (DS) of Inner Mongolia and the Mu Us Sandy Land (MU). After we nested NPV monitoring in the wind erosion model, an integrated model was developed, by which total vegetation cover and the corresponding frontal area were derived. Then, the aerodynamic parameters of the roughness elements were extracted using the Raupach drag partition scheme. The integrated model provided more accurate simulated wind erosion results compared to the original model, and the relative error of the simulated results by the integrated model was reduced by 61 %. NPV played an important role in wind erosion control, especially in non-growing seasons and in semi-arid regions. Finally, we discussed the potential uncertainties in wind erosion simulations induced by vegetation parameters. Our study provides a new insight into wind erosion simulations and the simulation results provide support for land conservation.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research