{"title":"On-site single image SVBRDF reconstruction with active planar lighting","authors":"Lianghao Zhang, Ruya Sun, Li Wang, Fangzhou Gao, Zixuan Wang, Jiawan Zhang","doi":"10.1016/j.cag.2025.104268","DOIUrl":null,"url":null,"abstract":"<div><div>Recovering the spatially-varying bidirectional reflectance distribution function (SVBRDF) from a single image in uncontrolled environments is challenging while essential for various applications. In this paper, we address this highly ill-posed problem using a convenient capture setup and a carefully designed reconstruction framework. Our proposed setup, which incorporates an active extended light source and a mirror hemisphere, is easy to implement for even common users and requires no careful calibration. These devices can simultaneously capture uncontrolled lighting, real active lighting patterns, and material appearance in a single image. Based on all captured information, we solve the reconstruction problem by designing lighting clues that are semantically aligned with the input image to aid the network in understanding the captured lighting. We further embed lighting clue generation into the network’s forward pass by introducing real-time rendering. This allows the network to render accurate lighting clues based on predicted normal variations while jointly learning to reconstruct high-quality SVBRDF. Moreover, we also use captured lighting patterns to model noises of pattern display in real scenes, which significantly increases the robustness of our methods on real data. With these innovations, our method demonstrates clear improvements over previous approaches on both synthetic and real-world data.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"130 ","pages":"Article 104268"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325001098","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Recovering the spatially-varying bidirectional reflectance distribution function (SVBRDF) from a single image in uncontrolled environments is challenging while essential for various applications. In this paper, we address this highly ill-posed problem using a convenient capture setup and a carefully designed reconstruction framework. Our proposed setup, which incorporates an active extended light source and a mirror hemisphere, is easy to implement for even common users and requires no careful calibration. These devices can simultaneously capture uncontrolled lighting, real active lighting patterns, and material appearance in a single image. Based on all captured information, we solve the reconstruction problem by designing lighting clues that are semantically aligned with the input image to aid the network in understanding the captured lighting. We further embed lighting clue generation into the network’s forward pass by introducing real-time rendering. This allows the network to render accurate lighting clues based on predicted normal variations while jointly learning to reconstruct high-quality SVBRDF. Moreover, we also use captured lighting patterns to model noises of pattern display in real scenes, which significantly increases the robustness of our methods on real data. With these innovations, our method demonstrates clear improvements over previous approaches on both synthetic and real-world data.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.