{"title":"Smart Contact Lens with High Sensitivity and Biocompatibility for Continuous Non-Invasive Intraocular Pressure Monitoring","authors":"Yunhao Tai, Qilong Cheng, Yuteng Liu, Xingqi Lu, Ting Xu, Xiaojian Li, Ping Liu, Tingting Luo*, Guangli Liu*, Yijing Gan* and Runhuai Yang*, ","doi":"10.1021/acssensors.5c00883","DOIUrl":null,"url":null,"abstract":"<p >Intelligent intraocular pressure (IOP) sensors capable of continuous monitoring play a crucial role in the treatment of glaucoma. However, early diagnosis and treatment continue to face significant challenges due to the unique physiological environment of the eye. The primary scientific challenge lies in developing a method for continuous, high-sensitivity IOP monitoring that does not damage corneal tissue. To address this issue, a novel smart contact lens was developed, integrating hydrogel-based micronano architectures with diffraction-grating-embedded films. This device leverages 3D printing technology to achieve conformal adhesion to the ocular surface, enabling real-time IOP monitoring through optical-to-digital signal transduction. Additionally, ex vivo porcine eyeballs were used for in vitro testing and evaluation to quantitatively demonstrate the performance of the smart sensor. The results indicate that the smart contact lens developed in this study exhibits excellent biocompatibility and a high sensitivity of 2.5% mmHg<sup>–1</sup> within the range of 0–50 mmHg, enabling precise IOP monitoring. These lenses hold significant potential for clinical IOP monitoring and demonstrate substantial promise for the next generation of ocular disease prevention.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 7","pages":"4996–5007"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssensors.5c00883","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Intelligent intraocular pressure (IOP) sensors capable of continuous monitoring play a crucial role in the treatment of glaucoma. However, early diagnosis and treatment continue to face significant challenges due to the unique physiological environment of the eye. The primary scientific challenge lies in developing a method for continuous, high-sensitivity IOP monitoring that does not damage corneal tissue. To address this issue, a novel smart contact lens was developed, integrating hydrogel-based micronano architectures with diffraction-grating-embedded films. This device leverages 3D printing technology to achieve conformal adhesion to the ocular surface, enabling real-time IOP monitoring through optical-to-digital signal transduction. Additionally, ex vivo porcine eyeballs were used for in vitro testing and evaluation to quantitatively demonstrate the performance of the smart sensor. The results indicate that the smart contact lens developed in this study exhibits excellent biocompatibility and a high sensitivity of 2.5% mmHg–1 within the range of 0–50 mmHg, enabling precise IOP monitoring. These lenses hold significant potential for clinical IOP monitoring and demonstrate substantial promise for the next generation of ocular disease prevention.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.