Extracting Coupling-Mode Spectral Densities with Two-Dimensional Electronic Spectroscopy

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Roosmarijn de Wit, Jonathan Keeling, Brendon W. Lovett, Alex W. Chin
{"title":"Extracting Coupling-Mode Spectral Densities with Two-Dimensional Electronic Spectroscopy","authors":"Roosmarijn de Wit, Jonathan Keeling, Brendon W. Lovett, Alex W. Chin","doi":"10.1021/acs.jpclett.5c00928","DOIUrl":null,"url":null,"abstract":"Methods for reconstructing the spectral density of a vibrational environment from experimental data can yield key insights into the impact of the environment on molecular function. Although such experimental methods exist, they generally only access vibrational modes that couple diagonally to the electronic system. Here we present a method for extracting the spectral density of modes that couple to the transition between electronic states, using two-dimensional electronic spectroscopy. To demonstrate this, we use a process-tensor method that can simulate two-dimensional electronic spectroscopy measurements in a numerically exact way. To explain how the extraction works, we also derive an approximate analytical solution, which illustrates that the non-Markovianity of the environment plays an essential role in the existence of the simulated signal.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00928","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Methods for reconstructing the spectral density of a vibrational environment from experimental data can yield key insights into the impact of the environment on molecular function. Although such experimental methods exist, they generally only access vibrational modes that couple diagonally to the electronic system. Here we present a method for extracting the spectral density of modes that couple to the transition between electronic states, using two-dimensional electronic spectroscopy. To demonstrate this, we use a process-tensor method that can simulate two-dimensional electronic spectroscopy measurements in a numerically exact way. To explain how the extraction works, we also derive an approximate analytical solution, which illustrates that the non-Markovianity of the environment plays an essential role in the existence of the simulated signal.

Abstract Image

二维电子能谱法提取耦合模谱密度
从实验数据中重建振动环境的光谱密度的方法可以对环境对分子功能的影响产生关键的见解。虽然存在这样的实验方法,但它们通常只访问对角线耦合到电子系统的振动模式。在这里,我们提出了一种利用二维电子能谱提取耦合到电子态之间跃迁的模式的谱密度的方法。为了证明这一点,我们使用了一种过程张量方法,可以以数值精确的方式模拟二维电子光谱测量。为了解释提取是如何工作的,我们还推导了一个近似解析解,它说明了环境的非马尔可夫性在模拟信号的存在中起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信