Hayley I. Muendlein, Wilson M. Connolly, Jamie Leiriao, Mei-An Nolan, Jennifer Judge, Irina Smirnova, Rebecca Batorsky, Alexander Poltorak
{"title":"TNF switches homeostatic efferocytosis to lytic caspase-8–dependent pyroptosis and IL-1β maturation","authors":"Hayley I. Muendlein, Wilson M. Connolly, Jamie Leiriao, Mei-An Nolan, Jennifer Judge, Irina Smirnova, Rebecca Batorsky, Alexander Poltorak","doi":"10.1126/sciimmunol.adq0043","DOIUrl":null,"url":null,"abstract":"<div >Efferocytosis, wherein phagocytes engulf dead or dying cells, is a critical function of macrophages that supports cellular turnover, tissue repair, and resolution of inflammation. Despite its well-established anti-inflammatory mechanism in homeostasis, whether efferocytosis remains immunologically silent in the context of dysregulated immune responses such as sepsis or systemic inflammatory response syndrome (SIRS) has not been investigated. Here, we used mouse models of tumor necrosis factor (TNF)–induced SIRS and <i>Escherichia coli–</i>induced septic peritonitis to uncover a potential negative consequence of efferocytosis. We found that when activated with TNF, phagocytes efferocytosing neutrophils initiated a caspase-8–dependent, but NLRP3 inflammasome–independent, form of pyroptosis, which we termed “efferoptosis.” The maturation of IL-1β, a hallmark of pyroptotic cell death, also occurred independently of canonical inflammasome activation, supporting direct cleavage by caspase-8. Inhibition of efferocytosis protected mice against TNF-induced SIRS, suggesting that efferoptosis contributes to the pathology of sepsis and other TNF-mediated inflammatory conditions.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"10 108","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciimmunol.adq0043","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/sciimmunol.adq0043","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Efferocytosis, wherein phagocytes engulf dead or dying cells, is a critical function of macrophages that supports cellular turnover, tissue repair, and resolution of inflammation. Despite its well-established anti-inflammatory mechanism in homeostasis, whether efferocytosis remains immunologically silent in the context of dysregulated immune responses such as sepsis or systemic inflammatory response syndrome (SIRS) has not been investigated. Here, we used mouse models of tumor necrosis factor (TNF)–induced SIRS and Escherichia coli–induced septic peritonitis to uncover a potential negative consequence of efferocytosis. We found that when activated with TNF, phagocytes efferocytosing neutrophils initiated a caspase-8–dependent, but NLRP3 inflammasome–independent, form of pyroptosis, which we termed “efferoptosis.” The maturation of IL-1β, a hallmark of pyroptotic cell death, also occurred independently of canonical inflammasome activation, supporting direct cleavage by caspase-8. Inhibition of efferocytosis protected mice against TNF-induced SIRS, suggesting that efferoptosis contributes to the pathology of sepsis and other TNF-mediated inflammatory conditions.
期刊介绍:
Science Immunology is a peer-reviewed journal that publishes original research articles in the field of immunology. The journal encourages the submission of research findings from all areas of immunology, including studies on innate and adaptive immunity, immune cell development and differentiation, immunogenomics, systems immunology, structural immunology, antigen presentation, immunometabolism, and mucosal immunology. Additionally, the journal covers research on immune contributions to health and disease, such as host defense, inflammation, cancer immunology, autoimmunity, allergy, transplantation, and immunodeficiency. Science Immunology maintains the same high-quality standard as other journals in the Science family and aims to facilitate understanding of the immune system by showcasing innovative advances in immunology research from all organisms and model systems, including humans.