Keewon Sung,Youngri Jung,Nahye Kim,Yong-Woo Kim,Hyongbum Henry Kim,Seong Keun Kim,Sangsu Bae
{"title":"A rational engineering strategy for structural dynamics modulation enables target specificity enhancement of the Cas9 nuclease.","authors":"Keewon Sung,Youngri Jung,Nahye Kim,Yong-Woo Kim,Hyongbum Henry Kim,Seong Keun Kim,Sangsu Bae","doi":"10.1093/nar/gkaf535","DOIUrl":null,"url":null,"abstract":"Structural dynamics of an enzyme plays a crucial role in enzymatic activity and substrate specificity, yet rational engineering of the dynamics for improved enzymatic properties remains a challenge. Here, we present a new biochemical strategy of intermediate state stabilization that modulates the multistep dynamic mechanisms of enzyme reactions to improve substrate specificity. We employ this strategy to enhance CRISPR-Cas9 nuclease specificity. By incorporating positively charged residues into the noncatalytic REC2 domain of Cas9, we stabilize the REC2-DNA interaction that forms exclusively in a catalytically inactive intermediate conformation of the Cas9 complex. This enables off-target trapping in the inactive conformation and thus reduces off-target cleavage in human cells. Furthermore, we combine the REC2 modification with mutations in previous rational variants, leading to the development of a combinational variant named Correct-Cas9, which connotes \"combined with rationally engineered REC-Two\" Cas9. Assessed by high-throughput analysis at thousands of target sequences, Correct-Cas9 exhibits increased target specificity compared to its parental variants, demonstrating a synergy between our strategy and previous rational approaches. Our method of intermediate state stabilization, either alone or combined with conventional approaches, could be applied to various nucleic acid-processing enzymes that undergo conformational changes upon target binding, to enhance their target specificity effectively.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"236 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf535","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Structural dynamics of an enzyme plays a crucial role in enzymatic activity and substrate specificity, yet rational engineering of the dynamics for improved enzymatic properties remains a challenge. Here, we present a new biochemical strategy of intermediate state stabilization that modulates the multistep dynamic mechanisms of enzyme reactions to improve substrate specificity. We employ this strategy to enhance CRISPR-Cas9 nuclease specificity. By incorporating positively charged residues into the noncatalytic REC2 domain of Cas9, we stabilize the REC2-DNA interaction that forms exclusively in a catalytically inactive intermediate conformation of the Cas9 complex. This enables off-target trapping in the inactive conformation and thus reduces off-target cleavage in human cells. Furthermore, we combine the REC2 modification with mutations in previous rational variants, leading to the development of a combinational variant named Correct-Cas9, which connotes "combined with rationally engineered REC-Two" Cas9. Assessed by high-throughput analysis at thousands of target sequences, Correct-Cas9 exhibits increased target specificity compared to its parental variants, demonstrating a synergy between our strategy and previous rational approaches. Our method of intermediate state stabilization, either alone or combined with conventional approaches, could be applied to various nucleic acid-processing enzymes that undergo conformational changes upon target binding, to enhance their target specificity effectively.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.