Valeria Maslova, Georgy Ermolaev, Evgeny S. Andrianov, Aleksey V. Arsenin, Valentyn S. Volkov, Denis G. Baranov
{"title":"The influence of shot noise on the performance of phase singularity-based refractometric sensors","authors":"Valeria Maslova, Georgy Ermolaev, Evgeny S. Andrianov, Aleksey V. Arsenin, Valentyn S. Volkov, Denis G. Baranov","doi":"10.1515/nanoph-2025-0101","DOIUrl":null,"url":null,"abstract":"Topological singularities of optical response functions – such as reflection amplitudes – enable elegant practical applications ranging from analog signal processing to novel molecular sensing approaches. A phase singularity-based refractometric sensor monitors the rapidly evolving <jats:italic>argument</jats:italic> of the optical field near the point of phase singularity, in contrast to the reflection zero in traditional surface plasmon polariton sensors. This raises a natural question: What happens with the sensitivity and resolution of such a sensor when it operates close to a zero of the response function, where the detected signal may be greatly influenced by various noise sources? In this paper, we systematically study the effect of the shot noise on the performance of a generic phase singularity-based refractometric sensor. We develop a theoretical model of a spectroscopic ellipsometry-based system operating near a phase singularity and couple the macroscopic optical picture of the detection with a quantum shot noise model. Within the developed model, we illustrate how the shot noise of the detector comes into play and study its effect on the sensitivity and resolution of the refractometric sensor. Our results suggest that such an ellipsometry-based phase singularity sensor remains stable even in the presence of shot noise near the point of zero reflection.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"29 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0101","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Topological singularities of optical response functions – such as reflection amplitudes – enable elegant practical applications ranging from analog signal processing to novel molecular sensing approaches. A phase singularity-based refractometric sensor monitors the rapidly evolving argument of the optical field near the point of phase singularity, in contrast to the reflection zero in traditional surface plasmon polariton sensors. This raises a natural question: What happens with the sensitivity and resolution of such a sensor when it operates close to a zero of the response function, where the detected signal may be greatly influenced by various noise sources? In this paper, we systematically study the effect of the shot noise on the performance of a generic phase singularity-based refractometric sensor. We develop a theoretical model of a spectroscopic ellipsometry-based system operating near a phase singularity and couple the macroscopic optical picture of the detection with a quantum shot noise model. Within the developed model, we illustrate how the shot noise of the detector comes into play and study its effect on the sensitivity and resolution of the refractometric sensor. Our results suggest that such an ellipsometry-based phase singularity sensor remains stable even in the presence of shot noise near the point of zero reflection.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.