Isabella J. Higgins, Sarah G. Choudury, Aman Y. Husbands
{"title":"Mechanisms driving functional divergence of transcription factor paralogs","authors":"Isabella J. Higgins, Sarah G. Choudury, Aman Y. Husbands","doi":"10.1111/nph.70309","DOIUrl":null,"url":null,"abstract":"SummaryTranscription factors (TFs) are core components of the regulatory toolkits that control gene expression. The sophistication of these regulatory toolkits dramatically increased during Eukaryotic evolution, accomplished in part by the duplication of existing TFs and the subsequent repurposing of these new paralogs. This process, termed functional divergence, drove the evolution of increasingly elaborate programs of gene expression and, in turn, cellular and organismal complexity. Mechanisms generating functional divergence of TF paralogs are thus of significant interest. Here, we review the numerous mechanisms that can lead to divergence of TF paralogs, drawing on studies from across Eukaryota but with a special emphasis on the plant kingdom. We end by placing these mechanisms back into a broader evolutionary context.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"12 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70309","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
SummaryTranscription factors (TFs) are core components of the regulatory toolkits that control gene expression. The sophistication of these regulatory toolkits dramatically increased during Eukaryotic evolution, accomplished in part by the duplication of existing TFs and the subsequent repurposing of these new paralogs. This process, termed functional divergence, drove the evolution of increasingly elaborate programs of gene expression and, in turn, cellular and organismal complexity. Mechanisms generating functional divergence of TF paralogs are thus of significant interest. Here, we review the numerous mechanisms that can lead to divergence of TF paralogs, drawing on studies from across Eukaryota but with a special emphasis on the plant kingdom. We end by placing these mechanisms back into a broader evolutionary context.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.