A Fast Electrochemical Impedance Spectroscopy with A Square Wave as Excitation Signal for Impedance-based Biomedical Applications.

Zhongzheng Wang, Han Shao, Alan O Riordan, Javier Higes-Marquez, Ivan O Connell, Daniel O Hare
{"title":"A Fast Electrochemical Impedance Spectroscopy with A Square Wave as Excitation Signal for Impedance-based Biomedical Applications.","authors":"Zhongzheng Wang, Han Shao, Alan O Riordan, Javier Higes-Marquez, Ivan O Connell, Daniel O Hare","doi":"10.1109/TBCAS.2025.3579698","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces a fast, high-accuracy methodology for conducting Electrochemical Impedance Spectroscopy (EIS) based on Fast Fourier Transform (FFT), to meet the requirements of portable, real-time biomedical impedance-based detections with Ultra-Microband (UMB) sensor. Instead of using white noise-like wideband signals as in conventional FFT-based EIS, the proposed method uses a square wave as the excitation signal, which achieves a fast, accurate EIS measurement, but no longer requires complex circuits like high-resolution DACs or frequency mixers for the signal generation. This work starts with the theoretical justification for treating the sensor as a Linear Time-Invariant (LTI), then the practical linear region for operating the sensor as an LTI system is experimentally verified and determined, which enables the capacity of employing the harmonics of a square wave for EIS measurements. A dynamic model of the charge-transfer resistance together with an approximated of the Constant Phase Element (CPE) are implemented with Verilog-A for simulations, and a circuit consisting of a control amplifier and a Trans-Impedance Amplifier (TIA) is designed and fabricated with 65 nm CMOS for validating its on-chip feasibility. This work shortens the EIS measurement time by 91.7% in a frequency sweep range from 0.5 Hz to 500 Hz, with only 2.73% average Mean Absolute Percentage Error (MAPE), compared to a commercial electrochemical instrument AutoLab, with five pre-modified electrodes across four different concentrations of Ferrocene Carboxylic Acid (FcCOOH), demonstrating this method is suitable for portable, real-time label-free EIS biomedical detections and applications.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2025.3579698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a fast, high-accuracy methodology for conducting Electrochemical Impedance Spectroscopy (EIS) based on Fast Fourier Transform (FFT), to meet the requirements of portable, real-time biomedical impedance-based detections with Ultra-Microband (UMB) sensor. Instead of using white noise-like wideband signals as in conventional FFT-based EIS, the proposed method uses a square wave as the excitation signal, which achieves a fast, accurate EIS measurement, but no longer requires complex circuits like high-resolution DACs or frequency mixers for the signal generation. This work starts with the theoretical justification for treating the sensor as a Linear Time-Invariant (LTI), then the practical linear region for operating the sensor as an LTI system is experimentally verified and determined, which enables the capacity of employing the harmonics of a square wave for EIS measurements. A dynamic model of the charge-transfer resistance together with an approximated of the Constant Phase Element (CPE) are implemented with Verilog-A for simulations, and a circuit consisting of a control amplifier and a Trans-Impedance Amplifier (TIA) is designed and fabricated with 65 nm CMOS for validating its on-chip feasibility. This work shortens the EIS measurement time by 91.7% in a frequency sweep range from 0.5 Hz to 500 Hz, with only 2.73% average Mean Absolute Percentage Error (MAPE), compared to a commercial electrochemical instrument AutoLab, with five pre-modified electrodes across four different concentrations of Ferrocene Carboxylic Acid (FcCOOH), demonstrating this method is suitable for portable, real-time label-free EIS biomedical detections and applications.

基于阻抗的生物医学应用中以方波为激励信号的快速电化学阻抗谱。
本文介绍了一种基于快速傅里叶变换(FFT)的快速、高精度电化学阻抗谱(EIS)方法,以满足便携式、实时生物医学阻抗检测的要求。该方法不像传统的基于fft的EIS那样使用类白噪声的宽带信号,而是使用方波作为激励信号,实现了快速、准确的EIS测量,但不再需要高分辨率dac或混频器等复杂电路来产生信号。这项工作从将传感器视为线性时不变(LTI)的理论论证开始,然后通过实验验证和确定将传感器作为LTI系统操作的实际线性区域,这使得能够使用方波的谐波进行EIS测量。利用Verilog-A软件建立了电荷转移电阻的动态模型和恒相元件(CPE)的近似模型进行仿真,并采用65 nm CMOS设计和制作了由控制放大器和跨阻抗放大器组成的电路,验证了其片上可行性。与AutoLab的商用电化学仪器相比,这项工作在0.5 Hz至500 Hz的频率扫描范围内将EIS测量时间缩短了91.7%,平均绝对百分比误差(MAPE)仅为2.73%,在四种不同浓度的二茂铁羧酸(FcCOOH)中使用了五个预修饰电极,证明了该方法适用于便携式,实时无标签的EIS生物医学检测和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信