Early stage prediction of bone regeneration using FEA and cell differentiation algorithms with 3D-printed PLA and PCL scaffolds: modeling and application to dorsal double-plating in distal radius fractures.

IF 3.2 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Hsuan Chih Liu, Ya-Han Chan, Shao-Fu Huang, Wei-Che Tsai, Yen Cheng, Chun-Li Lin
{"title":"Early stage prediction of bone regeneration using FEA and cell differentiation algorithms with 3D-printed PLA and PCL scaffolds: modeling and application to dorsal double-plating in distal radius fractures.","authors":"Hsuan Chih Liu, Ya-Han Chan, Shao-Fu Huang, Wei-Che Tsai, Yen Cheng, Chun-Li Lin","doi":"10.1186/s41205-025-00278-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces an advanced framework that integrates biphasic cell differentiation bone remodeling theory with finite element (FE) analysis and multi-remodeling simulation to evaluate the performance of 3D-printed biodegradable scaffolds for bone defect repair. The program incorporates a time-dependent cell differentiation stimulus (S), accounting for fluid-phase shear stress and solid-phase shear strain, to dynamically predict bone cell behavior. The study focuses on polylactic acid (PLA) and polycaprolactone (PCL) scaffolds with diamond (DU) and random (YM) lattice designs, applied to a dorsal double-plating (DDP) fixation model for distal radius fractures. Material testing reveals that PLA provides higher rigidity and strength, while PCL offers superior ductility. Mechanical strength tests confirm the superior performance of DU lattice structures under compression, shear, and torsion forces. The bone remodeling program, applied to 36 model combinations of fracture gaps, materials, and lattice designs, computes the total percentage of cell differentiation (TPCD), identifying scaffold material as the key factor, with PLA significantly enhancing TPCD values. Biomechanical analysis after 50 remodeling iterations in a 5.4 mm fracture gap shows that the PLA + DU scaffold reduces displacement by 35%/39%/75%, bone stress by 19%/16%/67%, and fixation plate stress by 77%/66%/93% under axial/bending/torsion loads, respectively, compared to the PCL + YM scaffold. This study highlights the critical role of dynamic remodeling programs in optimizing scaffold material properties and lattice architectures, establishing a robust platform for patient-specific bone repair solutions in regenerative medicine.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"11 1","pages":"30"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177956/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41205-025-00278-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an advanced framework that integrates biphasic cell differentiation bone remodeling theory with finite element (FE) analysis and multi-remodeling simulation to evaluate the performance of 3D-printed biodegradable scaffolds for bone defect repair. The program incorporates a time-dependent cell differentiation stimulus (S), accounting for fluid-phase shear stress and solid-phase shear strain, to dynamically predict bone cell behavior. The study focuses on polylactic acid (PLA) and polycaprolactone (PCL) scaffolds with diamond (DU) and random (YM) lattice designs, applied to a dorsal double-plating (DDP) fixation model for distal radius fractures. Material testing reveals that PLA provides higher rigidity and strength, while PCL offers superior ductility. Mechanical strength tests confirm the superior performance of DU lattice structures under compression, shear, and torsion forces. The bone remodeling program, applied to 36 model combinations of fracture gaps, materials, and lattice designs, computes the total percentage of cell differentiation (TPCD), identifying scaffold material as the key factor, with PLA significantly enhancing TPCD values. Biomechanical analysis after 50 remodeling iterations in a 5.4 mm fracture gap shows that the PLA + DU scaffold reduces displacement by 35%/39%/75%, bone stress by 19%/16%/67%, and fixation plate stress by 77%/66%/93% under axial/bending/torsion loads, respectively, compared to the PCL + YM scaffold. This study highlights the critical role of dynamic remodeling programs in optimizing scaffold material properties and lattice architectures, establishing a robust platform for patient-specific bone repair solutions in regenerative medicine.

利用有限元分析和细胞分化算法预测3d打印PLA和PCL支架骨再生的早期预测:桡骨远端骨折背侧双钢板的建模和应用
本研究引入了一种先进的框架,将双相细胞分化骨重塑理论与有限元分析和多次重塑模拟相结合,以评估3d打印生物可降解支架用于骨缺损修复的性能。该程序结合了一个时间依赖的细胞分化刺激(S),考虑到流体相剪切应力和固相剪切应变,以动态预测骨细胞的行为。本研究采用金刚石(DU)和随机(YM)晶格设计的聚乳酸(PLA)和聚己内酯(PCL)支架,应用于桡骨远端骨折背侧双电镀(DDP)固定模型。材料测试表明PLA具有更高的刚度和强度,而PCL具有优越的延展性。机械强度测试证实了DU晶格结构在压缩、剪切和扭转力下的优越性能。骨重塑程序应用于36个骨折间隙、材料和晶格设计的模型组合,计算细胞分化的总百分比(TPCD),确定支架材料是关键因素,PLA显著提高TPCD值。在5.4 mm骨折间隙内进行50次重构迭代后的生物力学分析表明,与PCL + YM支架相比,PLA + DU支架在轴向/弯曲/扭转载荷下的位移减少35%/39%/75%,骨应力减少19%/16%/67%,固定板应力减少77%/66%/93%。这项研究强调了动态重塑程序在优化支架材料性能和晶格结构方面的关键作用,为再生医学中针对患者的骨修复解决方案建立了一个强大的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信