Deep Learning for Cardiac Overload Estimation - Predicting B-Type Natriuretic Peptide (BNP) Levels From Heart Sounds and Electrocardiogram.

IF 3.7 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Circulation Journal Pub Date : 2025-09-25 Epub Date: 2025-06-17 DOI:10.1253/circj.CJ-25-0098
Shimpei Ogawa, Masanobu Ishii, Shumpei Saito, Hiroshi Seki, Koshiro Ikeda, Yuhei Yasui, Tomohiro Komatsu, Ginga Sato, Noriaki Tabata, Mitsuru Ohishi, Takuro Kubozono, Naritatsu Saito, Eri Toda Kato, Xiaoyang Song, Masahiro Yamada, Shunsuke Natori, Yuki Kunikane, Takafumi Yokomatsu, Masashi Kato, Yasuaki Sagara, Nami Uchiyama, Nobuhiko Atsuchi, Shota Kawahara, Shoji Natsugoe, Kenichi Tsujita
{"title":"Deep Learning for Cardiac Overload Estimation - Predicting B-Type Natriuretic Peptide (BNP) Levels From Heart Sounds and Electrocardiogram.","authors":"Shimpei Ogawa, Masanobu Ishii, Shumpei Saito, Hiroshi Seki, Koshiro Ikeda, Yuhei Yasui, Tomohiro Komatsu, Ginga Sato, Noriaki Tabata, Mitsuru Ohishi, Takuro Kubozono, Naritatsu Saito, Eri Toda Kato, Xiaoyang Song, Masahiro Yamada, Shunsuke Natori, Yuki Kunikane, Takafumi Yokomatsu, Masashi Kato, Yasuaki Sagara, Nami Uchiyama, Nobuhiko Atsuchi, Shota Kawahara, Shoji Natsugoe, Kenichi Tsujita","doi":"10.1253/circj.CJ-25-0098","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>B-type natriuretic peptide (BNP) and N-terminal pro-BNP (NT-pro-BNP) are key biomarkers used for heart failure (HF) management. Although traditional auscultation lacks objective evaluation, the SSS01-series phonocardiogram enables rapid recording of heart sounds and ECG. We developed a deep-learning model to estimate plasma BNP levels from these non-invasive dynamic physiological signals, with the aim of validating the model's performance with an external validation dataset and assessing its feasibility for clinical application.</p><p><strong>Methods and results: </strong>This multicenter study evaluated the estimated BNP (eBNP) model for predicting plasma BNP levels ≥100 pg/mL using 8 s of heart sound and ECG data. Validation was performed on an external validation dataset of 140 patients, achieving an area under the receiver operating characteristic curve (AUROC) of 0.895, with sensitivity and specificity of 84.3% and 82.9%, respectively. Subgroup analysis of patients with body mass index of 18.5-25 (n=127) showed more substantial predictive capability, with an AUROC of 0.959, sensitivity of 92.5%, and specificity of 84.8%.</p><p><strong>Conclusions: </strong>The eBNP model demonstrated strong potential for non-invasive and rapid HF screening. Its simplicity and objectivity make it ideally suited for point-of-care testing, offering a promising approach for early HF diagnosis and detection monitoring of HF exacerbations. These findings, validated on datasets independent of training, highlight the model's robustness across diverse clinical populations.</p>","PeriodicalId":50691,"journal":{"name":"Circulation Journal","volume":" ","pages":"1684-1692"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1253/circj.CJ-25-0098","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: B-type natriuretic peptide (BNP) and N-terminal pro-BNP (NT-pro-BNP) are key biomarkers used for heart failure (HF) management. Although traditional auscultation lacks objective evaluation, the SSS01-series phonocardiogram enables rapid recording of heart sounds and ECG. We developed a deep-learning model to estimate plasma BNP levels from these non-invasive dynamic physiological signals, with the aim of validating the model's performance with an external validation dataset and assessing its feasibility for clinical application.

Methods and results: This multicenter study evaluated the estimated BNP (eBNP) model for predicting plasma BNP levels ≥100 pg/mL using 8 s of heart sound and ECG data. Validation was performed on an external validation dataset of 140 patients, achieving an area under the receiver operating characteristic curve (AUROC) of 0.895, with sensitivity and specificity of 84.3% and 82.9%, respectively. Subgroup analysis of patients with body mass index of 18.5-25 (n=127) showed more substantial predictive capability, with an AUROC of 0.959, sensitivity of 92.5%, and specificity of 84.8%.

Conclusions: The eBNP model demonstrated strong potential for non-invasive and rapid HF screening. Its simplicity and objectivity make it ideally suited for point-of-care testing, offering a promising approach for early HF diagnosis and detection monitoring of HF exacerbations. These findings, validated on datasets independent of training, highlight the model's robustness across diverse clinical populations.

心脏负荷估计的深度学习-从心音和心电图预测b型利钠肽(BNP)水平。
背景:b型利钠肽(BNP)和n端前BNP (NT-pro-BNP)是用于心力衰竭(HF)治疗的关键生物标志物。虽然传统听诊缺乏客观评价,但sss01系列心音图能够快速记录心音和心电图。我们开发了一个深度学习模型,从这些非侵入性动态生理信号中估计血浆BNP水平,目的是通过外部验证数据集验证模型的性能,并评估其临床应用的可行性。方法和结果:本多中心研究利用8 s心音和ECG数据评估估计BNP (eBNP)模型预测血浆BNP水平≥100 pg/mL。在140例患者的外部验证数据集上进行验证,受试者工作特征曲线下面积(AUROC)为0.895,敏感性为84.3%,特异性为82.9%。亚组分析中,体质指数为18.5 ~ 25的患者(n=127)的预测能力更强,AUROC为0.959,敏感性为92.5%,特异性为84.8%。结论:eBNP模型显示出非侵入性、快速筛选HF的强大潜力。它的简单性和客观性使其非常适合于即时检测,为早期心衰诊断和心衰恶化的检测监测提供了一种有希望的方法。这些发现在独立于训练的数据集上得到验证,突出了该模型在不同临床人群中的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Circulation Journal
Circulation Journal 医学-心血管系统
CiteScore
5.80
自引率
12.10%
发文量
471
审稿时长
1.6 months
期刊介绍: Circulation publishes original research manuscripts, review articles, and other content related to cardiovascular health and disease, including observational studies, clinical trials, epidemiology, health services and outcomes studies, and advances in basic and translational research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信