{"title":"The transcription factor CeWRI3 functions in TAG accumulation through activating CeOLE2 in Cyperus esculentus.","authors":"Zhi Zou, Xiaowen Fu, Na Li, Panyan Zheng, Ruiling Wang, Hongyan Liu, Jiaquan Huang, Yongguo Zhao","doi":"10.1007/s00299-025-03534-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>A WRI-like gene (CeWRI3) homologous to AtWRI3/4 was isolated from oil-rich Cyperus esculentus tubers, which was shown to function in TAG accumulation through activating CeOLE2. In oilseeds, WRI1 has proven to be a master regulator in the transcriptional control of genes involved in fatty acid biosynthesis. By contrast, no evidence is available for WRI1 and its homologs in regulating genes associated with triacylglycerol (TAG) biosynthesis. In this study, we present the characterization of a WRINKLED (WRI)-like gene from tigernut (Cyperus esculentus L., Cyperaceae), a rare example accumulating high levels of TAGs in underground tubers. This gene was named CeWRI3 for its homology to AtWRI3/-4 in Arabidopsis thaliana. Subcellular localization analysis in Nicotiana benthamiana and transactivation assay in yeast revealed that CeWRI3 indeed functions as a transcription factor with nuclear localization and transcriptional activation activity. Further qRT-PCR analysis showed that CeWRI3 exhibits a constitutive expression pattern and its transcripts are positively correlated with TAG accumulation during tuber development. Moreover, transient overexpression of CeWRI3 in N. benthamiana leaves could significantly enhance the TAG content, implying its contribution to TAG accumulation in tigernut tubers. Correspondingly, yeast one-hybrid and dual-luciferase reporter assays revealed that CeWRI3 could activate CeOLE2, but not CeOLE5 and CeDGAT2b, another two key genes related to TAG biosynthesis. Our findings emphasize the potential application of CeWRI3 in improving oil production of vegetative tissues.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 7","pages":"146"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03534-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: A WRI-like gene (CeWRI3) homologous to AtWRI3/4 was isolated from oil-rich Cyperus esculentus tubers, which was shown to function in TAG accumulation through activating CeOLE2. In oilseeds, WRI1 has proven to be a master regulator in the transcriptional control of genes involved in fatty acid biosynthesis. By contrast, no evidence is available for WRI1 and its homologs in regulating genes associated with triacylglycerol (TAG) biosynthesis. In this study, we present the characterization of a WRINKLED (WRI)-like gene from tigernut (Cyperus esculentus L., Cyperaceae), a rare example accumulating high levels of TAGs in underground tubers. This gene was named CeWRI3 for its homology to AtWRI3/-4 in Arabidopsis thaliana. Subcellular localization analysis in Nicotiana benthamiana and transactivation assay in yeast revealed that CeWRI3 indeed functions as a transcription factor with nuclear localization and transcriptional activation activity. Further qRT-PCR analysis showed that CeWRI3 exhibits a constitutive expression pattern and its transcripts are positively correlated with TAG accumulation during tuber development. Moreover, transient overexpression of CeWRI3 in N. benthamiana leaves could significantly enhance the TAG content, implying its contribution to TAG accumulation in tigernut tubers. Correspondingly, yeast one-hybrid and dual-luciferase reporter assays revealed that CeWRI3 could activate CeOLE2, but not CeOLE5 and CeDGAT2b, another two key genes related to TAG biosynthesis. Our findings emphasize the potential application of CeWRI3 in improving oil production of vegetative tissues.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.