{"title":"CoHMGR2 as a Critical Regulator of Squalene Biosynthesis Key Period in Camellia oleifera Seed Kernels.","authors":"Yiyang Gu, Ziyan Zhu, Yanling Zeng, Xinhai Pan, Mengqi Lu, Xiaoxi Huang, Luyao Ge, Aori Li, Wenyi Bi, Qinhui Du, Heping Cao, Guliang Yang, Xiaofeng Tan","doi":"10.1111/ppl.70352","DOIUrl":null,"url":null,"abstract":"<p><p>Squalene is an extremely valuable medicinal substance. In addition to being valued for its high content of unsaturated fatty acids, Camellia oleifera is also highly regarded for its rich squalene content in the seed kernels. Comparing the squalene contents within Camellia species, it was found that the content in the seed oil of C. oleifera was higher than that of any other species. The squalene content of C. oleifera \"Huashuo\" (ColHS) reached 0.410 mg g<sup>-1</sup>, which was the highest. However, the squalene content in the seed kernels of ColHS did not increase gradually with the continuous maturation of the fruit. The squalene content reached its peak at 329DAP, about 0.854 mg g<sup>-1</sup>, and then decreased. With the differentially expressed genes and metabolites in the seed kernels at 329DAP and its surrounding periods, it was found that squalene content was accompanied by variations in secondary metabolites, terpenoids and flavonoids. The mevalonate (MVA) pathway played a significant role in squalene synthesis of ColHS seed kernels. In the MVA pathway, the expression patterns of four CoHMGR genes were consistent with the squalene content level. Among them, CoHMGR2 exhibited a strong correlation with squalene content. The CoHMGR2 was also found co-expressed with genes that had calcium ion-binding functions, playing a role in plant signal transduction. This study offers valuable insights into the relationship between squalene content and C. oleifera seed maturity. It also advances our understanding of the regulatory network of squalene synthesis in C. oleifera.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70352"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70352","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Squalene is an extremely valuable medicinal substance. In addition to being valued for its high content of unsaturated fatty acids, Camellia oleifera is also highly regarded for its rich squalene content in the seed kernels. Comparing the squalene contents within Camellia species, it was found that the content in the seed oil of C. oleifera was higher than that of any other species. The squalene content of C. oleifera "Huashuo" (ColHS) reached 0.410 mg g-1, which was the highest. However, the squalene content in the seed kernels of ColHS did not increase gradually with the continuous maturation of the fruit. The squalene content reached its peak at 329DAP, about 0.854 mg g-1, and then decreased. With the differentially expressed genes and metabolites in the seed kernels at 329DAP and its surrounding periods, it was found that squalene content was accompanied by variations in secondary metabolites, terpenoids and flavonoids. The mevalonate (MVA) pathway played a significant role in squalene synthesis of ColHS seed kernels. In the MVA pathway, the expression patterns of four CoHMGR genes were consistent with the squalene content level. Among them, CoHMGR2 exhibited a strong correlation with squalene content. The CoHMGR2 was also found co-expressed with genes that had calcium ion-binding functions, playing a role in plant signal transduction. This study offers valuable insights into the relationship between squalene content and C. oleifera seed maturity. It also advances our understanding of the regulatory network of squalene synthesis in C. oleifera.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.