{"title":"Intravenous administration of mesenchymal stem cell-derived exosomes mitigates traumatic brain injury by inhibiting neutrophil extracellular trap formation via miR-26a-5p.","authors":"Yichao Ye, Xiaoxiang Hou, Xianzheng Sang, Hantong Shi, Yangu Guo, Chengzi Yang, Wen Chen, Hanzi Cai, Chaogui Peng, Yunqing Li, Shi Yu, Danfeng Zhang, Lijun Hou","doi":"10.1097/WNR.0000000000002187","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Traumatic brain injury (TBI) results in severe long-term sequelae. While mesenchymal stem cell-derived exosomes (MSC-Exos) have demonstrated the ability to regulate microglial responses and neuroinflammation, their impact on neutrophil inactivation, particularly in relation to neutrophil extracellular traps (NETs), has not yet been fully elucidated. This research was designed to explore the potential involvement of MSC-Exos in modulating NET formation and microglial polarization following TBI.</p><p><strong>Methods: </strong>A murine TBI model and an in-vitro lipopolysaccharide-induced microglial activation model were utilized to evaluate the effects of miR-26a-5p-enriched exosomes on NET inhibition, microglial polarization, reduction of neuroinflammation, and promotion of neural function recovery.</p><p><strong>Results: </strong>Treatment with MSC-Exos post-TBI reduced NET formation and decreased microglial polarization into a proinflammatory phenotype. Genome-wide prediction detected miR-26a-5p as a predominant component of MSC-Exos, which was closely associated with TAB2. Functional assays demonstrated that miR-26a-5p suppressed NET formation in neutrophils and modulated microglial polarization. MRI and histopathological assessments confirmed that MSC-Exos enriched with miR-26a-5p significantly reduced neuronal death and lesion volume. Moreover, miR-26a-5p was found to regulate microglial polarization and reduce neuroinflammation via the TAB2/JNK/AP1 signaling pathway. Cognitive assessments employing the Morris Water Maze and Modified Neurological Severity Scores revealed significant improvements in neural function following treatment.</p><p><strong>Conclusion: </strong>These findings underscore the potential of MSC-Exos-miR-26a-5p to inhibit NET formation, modulate microglial polarization toward an anti-inflammatory phenotype, and enhance recovery from neural damage in TBI through the TAB2/JNK/AP1 pathway.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002187","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Traumatic brain injury (TBI) results in severe long-term sequelae. While mesenchymal stem cell-derived exosomes (MSC-Exos) have demonstrated the ability to regulate microglial responses and neuroinflammation, their impact on neutrophil inactivation, particularly in relation to neutrophil extracellular traps (NETs), has not yet been fully elucidated. This research was designed to explore the potential involvement of MSC-Exos in modulating NET formation and microglial polarization following TBI.
Methods: A murine TBI model and an in-vitro lipopolysaccharide-induced microglial activation model were utilized to evaluate the effects of miR-26a-5p-enriched exosomes on NET inhibition, microglial polarization, reduction of neuroinflammation, and promotion of neural function recovery.
Results: Treatment with MSC-Exos post-TBI reduced NET formation and decreased microglial polarization into a proinflammatory phenotype. Genome-wide prediction detected miR-26a-5p as a predominant component of MSC-Exos, which was closely associated with TAB2. Functional assays demonstrated that miR-26a-5p suppressed NET formation in neutrophils and modulated microglial polarization. MRI and histopathological assessments confirmed that MSC-Exos enriched with miR-26a-5p significantly reduced neuronal death and lesion volume. Moreover, miR-26a-5p was found to regulate microglial polarization and reduce neuroinflammation via the TAB2/JNK/AP1 signaling pathway. Cognitive assessments employing the Morris Water Maze and Modified Neurological Severity Scores revealed significant improvements in neural function following treatment.
Conclusion: These findings underscore the potential of MSC-Exos-miR-26a-5p to inhibit NET formation, modulate microglial polarization toward an anti-inflammatory phenotype, and enhance recovery from neural damage in TBI through the TAB2/JNK/AP1 pathway.
期刊介绍:
NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.
The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works.
We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.