The transcription factor MYB44 suppresses starch synthesis to negatively regulate grain weight and yield in wheat and rice.

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Plant Pub Date : 2025-07-07 Epub Date: 2025-06-18 DOI:10.1016/j.molp.2025.06.007
Yunchuan Liu, Mingming Wang, Yaojia Wang, Haixia Liu, Wei Xi, David Seung, Xiaolu Wang, Lei Zhuang, Huifang Li, Tian Li, Hongxia Liu, Jian Hou, Xu Liu, Chenyang Hao, Xueyong Zhang
{"title":"The transcription factor MYB44 suppresses starch synthesis to negatively regulate grain weight and yield in wheat and rice.","authors":"Yunchuan Liu, Mingming Wang, Yaojia Wang, Haixia Liu, Wei Xi, David Seung, Xiaolu Wang, Lei Zhuang, Huifang Li, Tian Li, Hongxia Liu, Jian Hou, Xu Liu, Chenyang Hao, Xueyong Zhang","doi":"10.1016/j.molp.2025.06.007","DOIUrl":null,"url":null,"abstract":"<p><p>Starch is the primary storage compound in wheat grains and is essential for both flour quality and grain weight. In this study, we identified TaMYB44, an R2R3-MYB transcription factor gene that controls starch content in wheat grains, through a genome-wide association study. The TaMYB44 homoeologs were predominantly expressed in developing grains, with peak levels observed 10 days after pollination. Functional analyses revealed that TaMYB44 acts as a negative regulator of starch synthesis in the endosperm, limiting grain size by repressing starch synthesis-related genes and modulating secondary metabolism. Knockout mutants of TaMYB44 exhibited significantly increased starch accumulation, larger grain size, and improved yield stability across diverse growing environments. Furthermore, we discovered that TaWDR1 interacts with TaMYB44, alleviating its repressive effects to restore starch synthesis and enhance grain weight. Notably, the functions of MYB44 appear to be partially conserved between wheat and rice, underscoring its potential as a target for genetic improvement. Our findings offer valuable insights into the transcriptional regulation of starch synthesis and provide genetic resources for enhancing grain yield in wheat and rice.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1193-1209"},"PeriodicalIF":17.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.06.007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Starch is the primary storage compound in wheat grains and is essential for both flour quality and grain weight. In this study, we identified TaMYB44, an R2R3-MYB transcription factor gene that controls starch content in wheat grains, through a genome-wide association study. The TaMYB44 homoeologs were predominantly expressed in developing grains, with peak levels observed 10 days after pollination. Functional analyses revealed that TaMYB44 acts as a negative regulator of starch synthesis in the endosperm, limiting grain size by repressing starch synthesis-related genes and modulating secondary metabolism. Knockout mutants of TaMYB44 exhibited significantly increased starch accumulation, larger grain size, and improved yield stability across diverse growing environments. Furthermore, we discovered that TaWDR1 interacts with TaMYB44, alleviating its repressive effects to restore starch synthesis and enhance grain weight. Notably, the functions of MYB44 appear to be partially conserved between wheat and rice, underscoring its potential as a target for genetic improvement. Our findings offer valuable insights into the transcriptional regulation of starch synthesis and provide genetic resources for enhancing grain yield in wheat and rice.

转录因子MYB44抑制淀粉合成,负调控小麦和水稻的粒重和产量。
淀粉是小麦籽粒中的主要贮藏化合物,对面粉品质和籽粒重量至关重要。在本研究中,我们通过全基因组关联研究鉴定了R2R3-MYB转录因子基因TaMYB44。TaMYB44同源基因在发育中的籽粒中表现出优势表达,在授粉后10天达到峰值。功能分析表明,TaMYB44是胚乳中淀粉合成的负调控因子,通过抑制淀粉合成相关基因和调节次生代谢来限制籽粒大小。TaMYB44基因敲除突变体在不同生长环境下淀粉积累显著增加,晶粒尺寸增大,产量稳定性增强。此外,我们发现TaWDR1与TaMYB44相互作用,减轻其抑制淀粉合成和增加籽粒重的作用。此外,我们发现MYB44的功能在小麦和水稻中都是部分保守的,这强调了它作为遗传改良靶点的潜力。我们的研究结果为研究淀粉合成的转录调控提供了有价值的见解,并为提高小麦和水稻的产量提供了遗传资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信