Metagenomic Insights into Candidatus Scalindua in a Long-term Cultivated Marine Anammox Consortium: The Important Role of Tetrahydrofolate-mediated Carbon Fixation.
IF 2 4区 环境科学与生态学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Metagenomic Insights into Candidatus Scalindua in a Long-term Cultivated Marine Anammox Consortium: The Important Role of Tetrahydrofolate-mediated Carbon Fixation.","authors":"Thelwadanage Nadisha Tharangani Kumari Nawarathna, Naoki Fujii, Kohei Yamamoto, Kyohei Kuroda, Takashi Narihiro, Noriatsu Ozaki, Akiyoshi Ohashi, Tomonori Kindaichi","doi":"10.1264/jsme2.ME25007","DOIUrl":null,"url":null,"abstract":"<p><p>Marine anammox bacteria have been an exciting research area in recent years due to their high effectiveness in treating ammonia-containing saline wastewater. However, their direct implementation in the wastewater industry faces challenges due to slow growth, difficulty obtaining pure cultures, and their tendency to exist as part of an anammox consortium, interacting symbiotically with other bacteria. In the present study, 91 draft genome metagenome-assembled genomes (MAGs) from a long-term-operated reactor were recovered to clarify detailed symbiotic interactions within an anammox consortium. One marine anammox bacterial MAG, identified as Candidatus Scalindua, was successfully recovered and was abundant within the sampled microbial community. A comprehensive metabolic pathway ana-lysis revealed that Ca. Scalindua exhibited the complete anammox pathway and the Wood-Ljungdahl pathway for carbon fixation. The folate biosynthesis pathway in Ca. Scalindua was incomplete, lacking dihydrofolate reductase, a key enzyme for tetrahydrofolate (THF) production. The folate biopterin transporter, essential for transporting folate-related metabolites among coexisting bacteria, was identified exclusively in Ca. Scalindua. In addition, the impact of exogenously supplied THF on microbial activity and carbon uptake rates was investigated in batch experiments using <sup>14</sup>C-labeled bicarbonate. The results obtained revealed that 2 mg L<sup>-1</sup> of exogenous THF resulted in a 43% increase in the carbon uptake rate, while anammox activity remained unaffected. The present results suggest that THF is a key intermediate for carbon fixation in Ca. Scalindua and may be essential for their growth.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"40 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213060/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME25007","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Marine anammox bacteria have been an exciting research area in recent years due to their high effectiveness in treating ammonia-containing saline wastewater. However, their direct implementation in the wastewater industry faces challenges due to slow growth, difficulty obtaining pure cultures, and their tendency to exist as part of an anammox consortium, interacting symbiotically with other bacteria. In the present study, 91 draft genome metagenome-assembled genomes (MAGs) from a long-term-operated reactor were recovered to clarify detailed symbiotic interactions within an anammox consortium. One marine anammox bacterial MAG, identified as Candidatus Scalindua, was successfully recovered and was abundant within the sampled microbial community. A comprehensive metabolic pathway ana-lysis revealed that Ca. Scalindua exhibited the complete anammox pathway and the Wood-Ljungdahl pathway for carbon fixation. The folate biosynthesis pathway in Ca. Scalindua was incomplete, lacking dihydrofolate reductase, a key enzyme for tetrahydrofolate (THF) production. The folate biopterin transporter, essential for transporting folate-related metabolites among coexisting bacteria, was identified exclusively in Ca. Scalindua. In addition, the impact of exogenously supplied THF on microbial activity and carbon uptake rates was investigated in batch experiments using 14C-labeled bicarbonate. The results obtained revealed that 2 mg L-1 of exogenous THF resulted in a 43% increase in the carbon uptake rate, while anammox activity remained unaffected. The present results suggest that THF is a key intermediate for carbon fixation in Ca. Scalindua and may be essential for their growth.
期刊介绍:
Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.