Structured light imaging mesoscopy: detection of embedded morphological changes in superficial tissues.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-06-01 Epub Date: 2025-06-18 DOI:10.1117/1.JBO.30.6.065001
Mahsa Parsanasab, Aarohi Mahesh Mehendale, Kavon Karrobi, Darren Roblyer, Vasan Venugopalan
{"title":"Structured light imaging mesoscopy: detection of embedded morphological changes in superficial tissues.","authors":"Mahsa Parsanasab, Aarohi Mahesh Mehendale, Kavon Karrobi, Darren Roblyer, Vasan Venugopalan","doi":"10.1117/1.JBO.30.6.065001","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Current paradigms for the optical characterization of layered tissues involve explicit consideration of an inverse problem which is often ill-posed and whose resolution may retain significant uncertainty. Here, we present an alternative approach, structured light imaging mesoscopy (SLIM), that leverages the inherent sensitivity of raw spatial frequency domain (SFD) reflectance measurements for the detection of embedded subsurface scattering changes in tissue.</p><p><strong>Aim: </strong>We identify wavelength-spatial frequency ( <math><mrow><mi>λ</mi> <mtext>-</mtext> <msub><mrow><mi>f</mi></mrow> <mrow><mi>x</mi></mrow> </msub> </mrow> </math> ) combinations that provide optimal sensitivity of SFD reflectance changes originating from scattering changes in an embedded tissue layer. We specifically consider the effects of scattering changes in the superficial dermis which is a key locus of pathology for diverse skin conditions such as cancer, aging, and scleroderma.</p><p><strong>Approach: </strong>We used Monte Carlo simulations in a four-layer skin model to analyze the SFD reflectance changes resulting from changes in superficial dermal scattering across wavelength ( <math><mrow><mi>λ</mi> <mo>=</mo> <mn>471</mn></mrow> </math> to 851 nm) and spatial frequency ( <math> <mrow> <msub><mrow><mi>f</mi></mrow> <mrow><mi>x</mi></mrow> </msub> <mo>=</mo> <mn>0</mn></mrow> </math> to 0.5/mm). Within this model, we consider different values for epidermal melanin concentration to simulate variations in skin tone.</p><p><strong>Results: </strong>Monte Carlo simulations revealed that scattering changes within the superficial dermis produce SFD reflectance changes which are maximized at specific ( <math><mrow><mi>λ</mi> <mtext>-</mtext> <msub><mrow><mi>f</mi></mrow> <mrow><mi>x</mi></mrow> </msub> </mrow> </math> ) pairs and vary with skin tone. For light skin tones, SFD reflectance changes due to scattering reductions in the superficial dermis are maximized at <math><mrow><mi>λ</mi> <mo>=</mo> <mn>621</mn> <mtext>  </mtext> <mi>nm</mi></mrow> </math> and spatial frequency <math> <mrow><msub><mi>f</mi> <mi>x</mi></msub> <mo>≈</mo> <mn>0.33</mn> <mo>/</mo> <mi>mm</mi></mrow> </math> . By contrast, for darker skin tones, maximal SFD reflectance changes occur at wavelengths in the near-infrared ( <math><mrow><mi>λ</mi> <mo>≥</mo> <mn>811</mn> <mtext>  </mtext> <mi>nm</mi></mrow> </math> ) at a spatial frequency of <math> <mrow> <msub><mrow><mi>f</mi></mrow> <mrow><mi>x</mi></mrow> </msub> <mo>≈</mo> <mn>0.25</mn> <mo>/</mo> <mi>mm</mi></mrow> </math> . Interestingly, the change in SFD reflectance produced by such scattering changes is most uniform across all skin tones when using the longest wavelength tested ( <math><mrow><mi>λ</mi> <mo>=</mo> <mn>851</mn> <mtext>  </mtext> <mi>nm</mi></mrow> </math> ) and a spatial frequency of <math> <mrow> <msub><mrow><mi>f</mi></mrow> <mrow><mi>x</mi></mrow> </msub> <mo>≈</mo> <mn>0.22</mn> <mo>/</mo> <mi>mm</mi></mrow> </math> . Taken together, our computational model identifies specific ( <math><mrow><mi>λ</mi> <mtext>-</mtext> <msub><mrow><mi>f</mi></mrow> <mrow><mi>x</mi></mrow> </msub> </mrow> </math> ) pairs to optimally detect embedded structural alterations in the superficial dermis.</p><p><strong>Conclusions: </strong>The findings establish the SLIM methodology as a means to detect morphological changes in an embedded subsurface tissue layer by leveraging inherent sensitivities of spatial frequency domain reflectance. This approach promises to enable simplified clinical tracking of subsurface microstructural alterations without the explicit need to consider an inverse problem approach.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 6","pages":"065001"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12175002/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.6.065001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Current paradigms for the optical characterization of layered tissues involve explicit consideration of an inverse problem which is often ill-posed and whose resolution may retain significant uncertainty. Here, we present an alternative approach, structured light imaging mesoscopy (SLIM), that leverages the inherent sensitivity of raw spatial frequency domain (SFD) reflectance measurements for the detection of embedded subsurface scattering changes in tissue.

Aim: We identify wavelength-spatial frequency ( λ - f x ) combinations that provide optimal sensitivity of SFD reflectance changes originating from scattering changes in an embedded tissue layer. We specifically consider the effects of scattering changes in the superficial dermis which is a key locus of pathology for diverse skin conditions such as cancer, aging, and scleroderma.

Approach: We used Monte Carlo simulations in a four-layer skin model to analyze the SFD reflectance changes resulting from changes in superficial dermal scattering across wavelength ( λ = 471 to 851 nm) and spatial frequency ( f x = 0 to 0.5/mm). Within this model, we consider different values for epidermal melanin concentration to simulate variations in skin tone.

Results: Monte Carlo simulations revealed that scattering changes within the superficial dermis produce SFD reflectance changes which are maximized at specific ( λ - f x ) pairs and vary with skin tone. For light skin tones, SFD reflectance changes due to scattering reductions in the superficial dermis are maximized at λ = 621    nm and spatial frequency f x 0.33 / mm . By contrast, for darker skin tones, maximal SFD reflectance changes occur at wavelengths in the near-infrared ( λ 811    nm ) at a spatial frequency of f x 0.25 / mm . Interestingly, the change in SFD reflectance produced by such scattering changes is most uniform across all skin tones when using the longest wavelength tested ( λ = 851    nm ) and a spatial frequency of f x 0.22 / mm . Taken together, our computational model identifies specific ( λ - f x ) pairs to optimally detect embedded structural alterations in the superficial dermis.

Conclusions: The findings establish the SLIM methodology as a means to detect morphological changes in an embedded subsurface tissue layer by leveraging inherent sensitivities of spatial frequency domain reflectance. This approach promises to enable simplified clinical tracking of subsurface microstructural alterations without the explicit need to consider an inverse problem approach.

结构光成像介观镜:检测浅表组织的嵌入形态变化。
意义:层状组织光学表征的当前范式涉及明确考虑逆问题,该问题通常是病态的,其解决可能保留显著的不确定性。在这里,我们提出了一种替代方法,结构光成像介观镜(SLIM),它利用原始空间频域(SFD)反射测量的固有灵敏度来检测组织中嵌入的地下散射变化。目的:我们确定波长-空间频率(λ - f x)组合,提供由嵌入组织层散射变化引起的SFD反射变化的最佳灵敏度。我们特别考虑了真皮表层散射变化的影响,真皮表层是多种皮肤疾病(如癌症、衰老和硬皮病)的关键病理位点。方法:我们在四层皮肤模型中使用蒙特卡罗模拟来分析皮肤表面散射在波长(λ = 471 ~ 851 nm)和空间频率(f x = 0 ~ 0.5/mm)上的变化对SFD反射率的影响。在这个模型中,我们考虑表皮黑色素浓度的不同值来模拟肤色的变化。结果:蒙特卡罗模拟显示,真皮表层的散射变化会产生SFD反射率变化,这种变化在特定(λ - fx)对处最大,并随肤色而变化。对于浅色肤色,由于真皮表层散射减少,SFD反射率变化在λ = 621 nm和空间频率f x≈0.33 / mm处最大。相比之下,对于较深的肤色,最大的SFD反射率变化发生在近红外波长(λ≥811 nm),空间频率为f x≈0.25 / mm。有趣的是,当使用测试的最长波长(λ = 851 nm)和f x≈0.22 / mm的空间频率时,这种散射变化所产生的SFD反射率变化在所有肤色中是最均匀的。综上所述,我们的计算模型确定了特定的(λ - f x)对,以最佳地检测真皮表层的嵌入结构变化。结论:研究结果建立了SLIM方法作为一种手段,通过利用固有的空间频域反射灵敏度来检测嵌入的亚表层组织层的形态变化。这种方法有望简化对地下微结构变化的临床跟踪,而不需要明确考虑反问题方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信