Enhanced delivery of podophyllotoxin for hepatocellular carcinoma therapy using polymersome as an anticancer delivery platform.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Parvaneh Peyvand, Zahra Vaezi, Mohsen Sharifi, Hossein Naderi-Manesh
{"title":"Enhanced delivery of podophyllotoxin for hepatocellular carcinoma therapy using polymersome as an anticancer delivery platform.","authors":"Parvaneh Peyvand, Zahra Vaezi, Mohsen Sharifi, Hossein Naderi-Manesh","doi":"10.1080/09205063.2025.2520687","DOIUrl":null,"url":null,"abstract":"<p><p>Podophyllotoxin (PPT), a bioactive compound, shows promise as a potential cancer treatment drug. Nevertheless, low solubility and bioavailability of PPT necessitate a drug delivery system to improve its effectiveness. PPT was extracted from Linum album and delivered into HepG2 cancer cells using mPEG-PCL nanoparticles. Copolymers were synthesized and confirmed by UV-Vis, FTIR, <sup>1</sup>HNMR, XRD, FESEM analyses, and the other physicochemical properties were also characterized. The critical micelle concentration of the copolymers was calculated, and the ratio of 1:10 with a CMC of 0.055 µg. mL<sup>-1</sup> was selected as the optimal ratio. The average size and surface charge of micelles were 186 ± 12 nm and -5.13 ± 0.61 mV, respectively. FESEM analysis showed a uniform and spherical structure of nanoparticles. PPT was loaded into mPEG-PCL micelles in various ratios (w/w) of drug: copolymer using the nanoprecipitation method, and the ratio of 1:1 was selected as the optimal ratio with encapsulation and loading efficiency of 79.89 ± 1.28% and 10.15 ± 2.16%, respectively. The PPT release profile demonstrated a significant difference between the sustained release of PPT from the nanoparticles and the rapid release of free PPT. Cellular uptake studies revealed that the polymersomes effectively deliver the PPT to the HepG2 cells. The <i>in vitro</i> cytotoxicity assay showed increased cytotoxicity of PPT/mPEG-PCL NPs compared to the free drug. Based on the overall results, these nanoparticles show promise as a delivery system for controlled release of PPT in cancer therapy.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-23"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2520687","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Podophyllotoxin (PPT), a bioactive compound, shows promise as a potential cancer treatment drug. Nevertheless, low solubility and bioavailability of PPT necessitate a drug delivery system to improve its effectiveness. PPT was extracted from Linum album and delivered into HepG2 cancer cells using mPEG-PCL nanoparticles. Copolymers were synthesized and confirmed by UV-Vis, FTIR, 1HNMR, XRD, FESEM analyses, and the other physicochemical properties were also characterized. The critical micelle concentration of the copolymers was calculated, and the ratio of 1:10 with a CMC of 0.055 µg. mL-1 was selected as the optimal ratio. The average size and surface charge of micelles were 186 ± 12 nm and -5.13 ± 0.61 mV, respectively. FESEM analysis showed a uniform and spherical structure of nanoparticles. PPT was loaded into mPEG-PCL micelles in various ratios (w/w) of drug: copolymer using the nanoprecipitation method, and the ratio of 1:1 was selected as the optimal ratio with encapsulation and loading efficiency of 79.89 ± 1.28% and 10.15 ± 2.16%, respectively. The PPT release profile demonstrated a significant difference between the sustained release of PPT from the nanoparticles and the rapid release of free PPT. Cellular uptake studies revealed that the polymersomes effectively deliver the PPT to the HepG2 cells. The in vitro cytotoxicity assay showed increased cytotoxicity of PPT/mPEG-PCL NPs compared to the free drug. Based on the overall results, these nanoparticles show promise as a delivery system for controlled release of PPT in cancer therapy.

利用聚合体作为抗癌传递平台增强鬼臼毒素在肝癌治疗中的传递。
鬼臼毒素(PPT)是一种生物活性化合物,有望成为一种潜在的癌症治疗药物。然而,PPT的低溶解度和生物利用度需要一种药物传递系统来提高其有效性。从Linum相册中提取PPT,利用mPEG-PCL纳米颗粒转染HepG2癌细胞。合成了共聚物,并通过UV-Vis、FTIR、1HNMR、XRD、FESEM等分析对其进行了确证,并对其理化性质进行了表征。计算了共聚物的临界胶束浓度,CMC为0.055µg,比例为1:10。以mL-1为最佳配比。胶束的平均尺寸为186±12 nm,表面电荷为-5.13±0.61 mV。FESEM分析表明,纳米颗粒具有均匀的球形结构。采用纳米沉淀法将PPT以不同的药/共聚物比例(w/w)装入mPEG-PCL胶束中,以1:1的比例为最佳配比,包封率和装药率分别为79.89±1.28%和10.15±2.16%。PPT释放谱显示,PPT从纳米颗粒中缓释与游离PPT的快速释放存在显著差异。细胞摄取研究表明,聚合体有效地将PPT传递到HepG2细胞。体外细胞毒性实验显示,与游离药物相比,PPT/mPEG-PCL NPs的细胞毒性增加。基于总体结果,这些纳米颗粒有望成为癌症治疗中控制释放PPT的递送系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信