Identification and functional characterisation of a novel antimicrobial peptide from the housefly, Musca domestica.

IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dongdong Lin, Shuangshuang Li, Shiying Li, Ting Tang, Fengsong Liu
{"title":"Identification and functional characterisation of a novel antimicrobial peptide from the housefly, Musca domestica.","authors":"Dongdong Lin, Shuangshuang Li, Shiying Li, Ting Tang, Fengsong Liu","doi":"10.1111/imb.13005","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) are increasingly being recognised as promising alternatives to conventional antibiotics due to their distinctive antimicrobial mechanisms and reduced likelihood of inducing drug resistance. Insects represent a significant source of AMPs. In this study, a potential AMP gene, MdAMP5, was identified based on its strong immunoinducibility and the presence of a signal peptide, and an amphipathic α-helix in the encoded protein. MdAMP5 encoded a 50-amino acid precursor protein with an N-terminal 22-amino acid signal peptide. The calculated molecular mass of the mature protein was 2.92 kDa, with an estimated isoelectric point of 6.23. Structural analyses revealed that the N-terminus of mature MdAMP5 contained an irregularly coiled segment, while the C-terminus featured an amphipathic α-helix with a glycine-lysine residue at the end. Furthermore, the MdAMP5 gene was successfully expressed in the yeast Pichia pastoris, and the recombinant MdAMP5 (rMdAMP5) protein exhibited effective and broad-spectrum antimicrobial activity against both Gram-positive and Gram-negative bacteria in vitro and in vivo. Treatment with rMdAMP5 resulted in significant changes in bacterial morphology, including cell lysis and deformation of bacteriophages. In conclusion, this study identified and successfully expressed a novel AMP that showed low cytotoxicity to mammalian cells and high selectivity towards bacterial cells. This research offers a new candidate for therapeutic drug development, and enhances the understanding of the mechanism and application of AMPs.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.13005","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial peptides (AMPs) are increasingly being recognised as promising alternatives to conventional antibiotics due to their distinctive antimicrobial mechanisms and reduced likelihood of inducing drug resistance. Insects represent a significant source of AMPs. In this study, a potential AMP gene, MdAMP5, was identified based on its strong immunoinducibility and the presence of a signal peptide, and an amphipathic α-helix in the encoded protein. MdAMP5 encoded a 50-amino acid precursor protein with an N-terminal 22-amino acid signal peptide. The calculated molecular mass of the mature protein was 2.92 kDa, with an estimated isoelectric point of 6.23. Structural analyses revealed that the N-terminus of mature MdAMP5 contained an irregularly coiled segment, while the C-terminus featured an amphipathic α-helix with a glycine-lysine residue at the end. Furthermore, the MdAMP5 gene was successfully expressed in the yeast Pichia pastoris, and the recombinant MdAMP5 (rMdAMP5) protein exhibited effective and broad-spectrum antimicrobial activity against both Gram-positive and Gram-negative bacteria in vitro and in vivo. Treatment with rMdAMP5 resulted in significant changes in bacterial morphology, including cell lysis and deformation of bacteriophages. In conclusion, this study identified and successfully expressed a novel AMP that showed low cytotoxicity to mammalian cells and high selectivity towards bacterial cells. This research offers a new candidate for therapeutic drug development, and enhances the understanding of the mechanism and application of AMPs.

家蝇一种新型抗菌肽的鉴定和功能表征。
抗菌肽(AMPs)由于其独特的抗菌机制和降低诱导耐药性的可能性,越来越被认为是传统抗生素的有希望的替代品。昆虫是amp的重要来源。在本研究中,一个潜在的AMP基因MdAMP5被发现,基于其强大的免疫诱导性和信号肽的存在,以及编码蛋白中两偶性α-螺旋。MdAMP5编码一个含有50个氨基酸的前体蛋白,其n端含有22个氨基酸的信号肽。计算得到成熟蛋白的分子质量为2.92 kDa,等电点为6.23。结构分析表明,成熟的MdAMP5的n端含有不规则卷曲的片段,而c端具有两亲性α-螺旋,末端有甘氨酸-赖氨酸残基。此外,MdAMP5基因在酵母毕赤酵母中成功表达,重组MdAMP5 (rMdAMP5)蛋白在体外和体内对革兰氏阳性菌和革兰氏阴性菌均表现出有效的广谱抗菌活性。rMdAMP5处理导致细菌形态发生显著变化,包括细胞裂解和噬菌体变形。总之,本研究鉴定并成功表达了一种对哺乳动物细胞具有低细胞毒性和对细菌细胞具有高选择性的新型AMP。该研究为治疗药物开发提供了新的候选药物,并增强了对amp机制和应用的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Insect Molecular Biology
Insect Molecular Biology 生物-昆虫学
CiteScore
4.80
自引率
3.80%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins. This includes research related to: • insect gene structure • control of gene expression • localisation and function/activity of proteins • interactions of proteins and ligands/substrates • effect of mutations on gene/protein function • evolution of insect genes/genomes, especially where principles relevant to insects in general are established • molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations • gene mapping using molecular tools • molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信