Adenosine A2B receptor mediates cyclosporine counteraction of inflammatory and renal consequences of sepsis in rats.

IF 2.9 4区 医学 Q3 IMMUNOLOGY
Simone A Salama, Marwa Y Sallam, Sahar M El-Gowilly
{"title":"Adenosine A2B receptor mediates cyclosporine counteraction of inflammatory and renal consequences of sepsis in rats.","authors":"Simone A Salama, Marwa Y Sallam, Sahar M El-Gowilly","doi":"10.1080/08923973.2025.2521005","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The immunosuppressant drug cyclosporine A (CsA) demonstrates anti-inflammatory properties in numerous pathological conditions. It acts through modulating T-cell receptor signaling, reducing the expression of inflammatory cytokines, and inhibiting mitochondrial permeability, besides modulating vascular response. These features make it a potential drug to prevent or treat septic acute kidney injury (AKI).</p><p><strong>Objective: </strong>In this study, we investigated whether CsA exerts a protective effect against hemodynamic, inflammatory, and renovascular consequences of sepsis and whether these effects are modulated by adenosine receptor signaling.</p><p><strong>Material and methods: </strong>Cecal ligation and puncture (CLP) was utilized to induce sepsis 24 h before hemodynamic and renovascular studies were implicated. Renal vasoconstrictions and vasodilatations were induced by cumulative bolus injections of phenylephrine (PE, 0.41-900 ng) and acetylcholine (ACh, 0.01-7.29 nmol), respectively.</p><p><strong>Results: </strong>The data showed that CsA abrogated CLP-evoked hypotension, tachycardia, and impaired renovascular responsiveness. Similarly, the elevation in kidney biomarkers together with the pro-inflammatory cytokines (Tumor necrosis factor-alpha (TNFα) and Interleukin-6 (IL-6)) were also blunted after CsA administration. Likewise, the elevation in nuclear factor kappa-light-chain enhancer of activated B cells (NFκB) and decrease in A2BRs renal tubular expression in sepsis was reversed in CsA-treated rats. These advantageous effects of CsA disappeared upon concurrent exposure to the selective A2BR antagonist, Alloxazine.</p><p><strong>Conclusion: </strong>These results suggest a key role for functional A2BR in CsA counteracting CLP-induced hemodynamic, inflammatory, and renal dysfunction in rats.</p>","PeriodicalId":13420,"journal":{"name":"Immunopharmacology and Immunotoxicology","volume":" ","pages":"1-12"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunopharmacology and Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08923973.2025.2521005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The immunosuppressant drug cyclosporine A (CsA) demonstrates anti-inflammatory properties in numerous pathological conditions. It acts through modulating T-cell receptor signaling, reducing the expression of inflammatory cytokines, and inhibiting mitochondrial permeability, besides modulating vascular response. These features make it a potential drug to prevent or treat septic acute kidney injury (AKI).

Objective: In this study, we investigated whether CsA exerts a protective effect against hemodynamic, inflammatory, and renovascular consequences of sepsis and whether these effects are modulated by adenosine receptor signaling.

Material and methods: Cecal ligation and puncture (CLP) was utilized to induce sepsis 24 h before hemodynamic and renovascular studies were implicated. Renal vasoconstrictions and vasodilatations were induced by cumulative bolus injections of phenylephrine (PE, 0.41-900 ng) and acetylcholine (ACh, 0.01-7.29 nmol), respectively.

Results: The data showed that CsA abrogated CLP-evoked hypotension, tachycardia, and impaired renovascular responsiveness. Similarly, the elevation in kidney biomarkers together with the pro-inflammatory cytokines (Tumor necrosis factor-alpha (TNFα) and Interleukin-6 (IL-6)) were also blunted after CsA administration. Likewise, the elevation in nuclear factor kappa-light-chain enhancer of activated B cells (NFκB) and decrease in A2BRs renal tubular expression in sepsis was reversed in CsA-treated rats. These advantageous effects of CsA disappeared upon concurrent exposure to the selective A2BR antagonist, Alloxazine.

Conclusion: These results suggest a key role for functional A2BR in CsA counteracting CLP-induced hemodynamic, inflammatory, and renal dysfunction in rats.

腺苷A2B受体介导大鼠脓毒症的炎症和肾脏后果的环孢素拮抗。
免疫抑制药物环孢素A (CsA)在许多病理条件下显示出抗炎特性。除了调节血管反应外,它还通过调节t细胞受体信号,减少炎症细胞因子的表达,抑制线粒体通透性来起作用。这些特点使其成为预防或治疗脓毒性急性肾损伤(AKI)的潜在药物。目的:在本研究中,我们研究CsA是否对脓毒症的血流动力学、炎症和肾血管后果具有保护作用,以及这些作用是否受到腺苷受体信号传导的调节。材料和方法:在进行血流动力学和肾血管研究前24小时,采用盲肠结扎穿刺(CLP)诱导脓毒症。累积注射苯肾上腺素(PE, 0.41 ~ 900 ng)和乙酰胆碱(ACh, 0.01 ~ 7.29 nmol)分别诱导大鼠肾血管收缩和舒张。结果:数据显示CsA消除了clp诱发的低血压、心动过速和肾血管反应性受损。同样,给药CsA后,肾脏生物标志物和促炎细胞因子(肿瘤坏死因子- α (tnf - α)和白细胞介素-6 (IL-6))的升高也被减弱。同样,在csa处理的大鼠中,脓毒症中活化B细胞核因子κB轻链增强子(NFκB)的升高和A2BRs肾小管表达的降低是逆转的。当同时暴露于选择性A2BR拮抗剂Alloxazine时,CsA的这些有利作用消失了。结论:这些结果提示功能性A2BR在CsA对抗clp诱导的大鼠血流动力学、炎症和肾功能障碍中起关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
133
审稿时长
4-8 weeks
期刊介绍: The journal Immunopharmacology and Immunotoxicology is devoted to pre-clinical and clinical drug discovery and development targeting the immune system. Research related to the immunoregulatory effects of various compounds, including small-molecule drugs and biologics, on immunocompetent cells and immune responses, as well as the immunotoxicity exerted by xenobiotics and drugs. Only research that describe the mechanisms of specific compounds (not extracts) is of interest to the journal. The journal will prioritise preclinical and clinical studies on immunotherapy of disorders such as chronic inflammation, allergy, autoimmunity, cancer etc. The effects of small-drugs, vaccines and biologics against central immunological targets as well as cell-based therapy, including dendritic cell therapy, T cell adoptive transfer and stem cell therapy, are topics of particular interest. Publications pointing towards potential new drug targets within the immune system or novel technology for immunopharmacological drug development are also welcome. With an immunoscience focus on drug development, immunotherapy and toxicology, the journal will cover areas such as infection, allergy, inflammation, tumor immunology, degenerative disorders, immunodeficiencies, neurology, atherosclerosis and more. Immunopharmacology and Immunotoxicology will accept original manuscripts, brief communications, commentaries, mini-reviews, reviews, clinical trials and clinical cases, on the condition that the results reported are based on original, clinical, or basic research that has not been published elsewhere in any journal in any language (except in abstract form relating to paper communicated to scientific meetings and symposiums).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信