Mini review: Apple improvement, traditional approaches, biotechnology options, and regulatory considerations.

IF 4.8 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Frontiers in Bioengineering and Biotechnology Pub Date : 2025-06-04 eCollection Date: 2025-01-01 DOI:10.3389/fbioe.2025.1617110
Amy L Klocko
{"title":"Mini review: Apple improvement, traditional approaches, biotechnology options, and regulatory considerations.","authors":"Amy L Klocko","doi":"10.3389/fbioe.2025.1617110","DOIUrl":null,"url":null,"abstract":"<p><p>Apples are a popular and globally important crop. The fruits are eaten fresh, pressed for juice, fermented as cider, processed into sauce, dried, and more. There are thousands of different cultivars, a small subset of which are grown on a commercial scale. Genetic analysis has shown that, as a group, domestic apples have a complicated genetic background, with contributions from multiple wild species. By contrast, most of the highly produced commercialized modern cultivars share a narrow range of genetic diversity. However, as apples are outcrossing, propagated vegetatively, and long-lived, wild and heirloom varieties can be maintained and are valuable sources of genetic diversity for desirable traits. Apples are also amenable to genetic transformation, and work in this area has resulted in improved resistance to diseases and a commercialized non-browning variety, the Arctic™ Apple. Traditional breeding, breeding guided by modern genetic knowledge, and biotechnology all contribute to the overall process of apple cultivar development and represent an important example of how many approaches can be used in crop improvement. As global biosafety regulations continue to develop and change, countries will be tasked with developing guidelines for both the creation and import of apple trees and apple products.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1617110"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12175005/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1617110","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Apples are a popular and globally important crop. The fruits are eaten fresh, pressed for juice, fermented as cider, processed into sauce, dried, and more. There are thousands of different cultivars, a small subset of which are grown on a commercial scale. Genetic analysis has shown that, as a group, domestic apples have a complicated genetic background, with contributions from multiple wild species. By contrast, most of the highly produced commercialized modern cultivars share a narrow range of genetic diversity. However, as apples are outcrossing, propagated vegetatively, and long-lived, wild and heirloom varieties can be maintained and are valuable sources of genetic diversity for desirable traits. Apples are also amenable to genetic transformation, and work in this area has resulted in improved resistance to diseases and a commercialized non-browning variety, the Arctic™ Apple. Traditional breeding, breeding guided by modern genetic knowledge, and biotechnology all contribute to the overall process of apple cultivar development and represent an important example of how many approaches can be used in crop improvement. As global biosafety regulations continue to develop and change, countries will be tasked with developing guidelines for both the creation and import of apple trees and apple products.

迷你评论:苹果改进、传统方法、生物技术选择和监管考虑。
苹果是一种受欢迎的全球重要作物。水果被新鲜食用,压榨成果汁,发酵成苹果酒,加工成酱汁,晒干等等。有数千种不同的品种,其中一小部分在商业规模上种植。遗传分析表明,作为一个群体,国内苹果具有复杂的遗传背景,有多个野生物种的贡献。相比之下,大多数高产的商业化现代品种的遗传多样性范围很窄。然而,由于苹果是异交、无性繁殖和长寿的,野生和传家宝品种可以保持,并且是理想性状遗传多样性的宝贵来源。苹果也可以进行基因改造,这一领域的研究已经提高了苹果的抗病能力,并培育出了一种商业化的非褐变品种——北极苹果。传统育种、现代遗传知识指导下的育种和生物技术都对苹果品种发展的整个过程做出了贡献,并代表了许多方法可以用于作物改良的重要例子。随着全球生物安全法规的不断发展和变化,各国将负责制定苹果树和苹果产品的种植和进口指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信