Historical Measurement Information Can Be Used to Improve Estimation of Structural Parameters in Structural Equation Models With Small Samples.

IF 2.1 3区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
James Ohisei Uanhoro, Olushola O Soyoye
{"title":"Historical Measurement Information Can Be Used to Improve Estimation of Structural Parameters in Structural Equation Models With Small Samples.","authors":"James Ohisei Uanhoro, Olushola O Soyoye","doi":"10.1177/00131644251330851","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the incorporation of historical measurement information into structural equation models (SEM) with small samples to enhance the estimation of structural parameters. Given the availability of published factor analysis results with loading estimates and standard errors for popular scales, researchers may use this historical information as informative priors in Bayesian SEM (BSEM). We focus on estimating the correlation between two constructs using BSEM after generating data with significant bias in the Pearson correlation of their sum scores due to measurement error. Our findings indicate that incorporating historical information on measurement parameters as priors can improve the accuracy of correlation estimates, mainly when the true correlation is small-a common scenario in psychological research. Priors derived from meta-analytic estimates were especially effective, providing high accuracy and acceptable coverage. However, when the true correlation is large, weakly informative priors on all parameters yield the best results. These results suggest leveraging historical measurement information in BSEM can enhance structural parameter estimation.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":" ","pages":"00131644251330851"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12170579/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644251330851","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the incorporation of historical measurement information into structural equation models (SEM) with small samples to enhance the estimation of structural parameters. Given the availability of published factor analysis results with loading estimates and standard errors for popular scales, researchers may use this historical information as informative priors in Bayesian SEM (BSEM). We focus on estimating the correlation between two constructs using BSEM after generating data with significant bias in the Pearson correlation of their sum scores due to measurement error. Our findings indicate that incorporating historical information on measurement parameters as priors can improve the accuracy of correlation estimates, mainly when the true correlation is small-a common scenario in psychological research. Priors derived from meta-analytic estimates were especially effective, providing high accuracy and acceptable coverage. However, when the true correlation is large, weakly informative priors on all parameters yield the best results. These results suggest leveraging historical measurement information in BSEM can enhance structural parameter estimation.

利用历史测量信息可以改善小样本结构方程模型中结构参数的估计。
本研究探讨了将历史测量信息纳入小样本结构方程模型(SEM)以增强结构参数的估计。考虑到已发表的因子分析结果的可用性,研究人员可以使用这些历史信息作为贝叶斯扫描电镜(BSEM)的信息先验。我们的重点是在生成由于测量误差导致的总得分的Pearson相关性存在显著偏差的数据后,使用BSEM估计两个结构之间的相关性。我们的研究结果表明,将测量参数的历史信息作为先验可以提高相关估计的准确性,特别是当真实相关性很小时-这是心理学研究中的常见情况。来自元分析估计的先验尤其有效,提供了高准确性和可接受的覆盖率。然而,当真正的相关性很大时,所有参数的弱信息先验产生最好的结果。这些结果表明,利用历史测量信息在BSEM中可以提高结构参数的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Educational and Psychological Measurement
Educational and Psychological Measurement 医学-数学跨学科应用
CiteScore
5.50
自引率
7.40%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信