{"title":"Discovery of Novel Anti-Acetylcholinesterase Peptides Using a Machine Learning and Molecular Docking Approach.","authors":"Wei Xiao, Liu-Zhen Chen, Jun Chang, Yi-Wen Xiao","doi":"10.2147/DDDT.S523769","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Alzheimer's disease poses a significant threat to human health. Currenttherapeutic medicines, while alleviate symptoms, fail to reverse the disease progression or reduce its harmful effects, and exhibit toxicity and side effects such as gastrointestinal discomfort and cardiovascular disorders. The major challenge in developing machine learning models for anti-acetylcholinesterase peptides discovery is the limited availability of active peptide data in public databases. This study primarily aims to address this challenge and secondarily to discover novel, safer, and less toxic anti-acetylcholinesterase peptides for better Alzheimer's disease treatment.</p><p><strong>Methods: </strong>A Random Forest Classifier model was constructed from a hybrid dataset of non-peptide small molecules and peptides. It was applied to screen a custom peptide library. The binding affinities of the predicted peptides to acetylcholinesterase were assessed via molecular docking, and top ranked peptides were selected for experimental assay.</p><p><strong>Results: </strong>The top six peptides (IFLSMC, WCWIYN, WIGCWD, LHTMELL, WHLCVLF, and VWIIGFEHM) were selected for experimental validation. Their inhibitiory effects on acetylcholinesterase were determined to be 0.007, 3.4, 1.9, 10.6, 1.5, and 3.9 μmol/L, respectively.</p><p><strong>Discussion: </strong>Predicting anti-acetylcholinesterase peptides is challenging due to the absence of a comprehensive, publicly accessible peptide database. Traditional approaches using only non-peptide small molecules for model construction often have poor performance on predicting active peptides. Here, we developed a machine-learning model from a hybrid dataset of non-peptide small molecules and peptides, which find six potent peptides. This model was as/superior accuracy compared to small-molecule-only models reported before, but has a significant higher capability of discriminating active peptides. Our work shows that hybrid datasets can boost machine-learning model prediction in peptide drug discovery.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"5085-5098"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176101/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S523769","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Alzheimer's disease poses a significant threat to human health. Currenttherapeutic medicines, while alleviate symptoms, fail to reverse the disease progression or reduce its harmful effects, and exhibit toxicity and side effects such as gastrointestinal discomfort and cardiovascular disorders. The major challenge in developing machine learning models for anti-acetylcholinesterase peptides discovery is the limited availability of active peptide data in public databases. This study primarily aims to address this challenge and secondarily to discover novel, safer, and less toxic anti-acetylcholinesterase peptides for better Alzheimer's disease treatment.
Methods: A Random Forest Classifier model was constructed from a hybrid dataset of non-peptide small molecules and peptides. It was applied to screen a custom peptide library. The binding affinities of the predicted peptides to acetylcholinesterase were assessed via molecular docking, and top ranked peptides were selected for experimental assay.
Results: The top six peptides (IFLSMC, WCWIYN, WIGCWD, LHTMELL, WHLCVLF, and VWIIGFEHM) were selected for experimental validation. Their inhibitiory effects on acetylcholinesterase were determined to be 0.007, 3.4, 1.9, 10.6, 1.5, and 3.9 μmol/L, respectively.
Discussion: Predicting anti-acetylcholinesterase peptides is challenging due to the absence of a comprehensive, publicly accessible peptide database. Traditional approaches using only non-peptide small molecules for model construction often have poor performance on predicting active peptides. Here, we developed a machine-learning model from a hybrid dataset of non-peptide small molecules and peptides, which find six potent peptides. This model was as/superior accuracy compared to small-molecule-only models reported before, but has a significant higher capability of discriminating active peptides. Our work shows that hybrid datasets can boost machine-learning model prediction in peptide drug discovery.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.