{"title":"Antibody-aptamer Complementation: Advancing Biosensing for Disease Monitoring.","authors":"Thangavel Lakshmipriya, Subash C B Gopinath","doi":"10.2174/0115680266372074250603091350","DOIUrl":null,"url":null,"abstract":"<p><p>A biosensor is a biological device designed to convert biological responses into an electrical signal, which has diverse applications across various fields, including diagnostics, environmental monitoring, food safety, and drug discovery. Among these, biosensing technology has achieved remarkable success in medical diagnostics. To detect target molecules for various probe molecules, such as nucleic acids, peptides, antibodies, and proteins are widely used. Of these, antibodies are well-established as remarkable molecules for detecting and monitoring a broad range of analytes. Recently, a novel class of molecules known as aptamers, often referred to as \"artificial antibodies,\" has gained significant attention from researchers for numerous biomedical applications, particularly in biosensing. Aptamers are synthetic molecules generated through a method called Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Since aptamer and antibody have different bindings for target molecules, various biosensing techniques are utilized by using the combination of aptamer and antibody to enhance the biosensor. This combination possesses a unique and beneficial feature and holds the potential to drive significant advancements in sensing technology. Applying these combinations in biosensing technologies has some limitations due to the aptamer generation for some particular targets. This review explores recent applications of antibodies, aptamers, and their combined use in enhancing biosensing technologies and their limitations.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266372074250603091350","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
A biosensor is a biological device designed to convert biological responses into an electrical signal, which has diverse applications across various fields, including diagnostics, environmental monitoring, food safety, and drug discovery. Among these, biosensing technology has achieved remarkable success in medical diagnostics. To detect target molecules for various probe molecules, such as nucleic acids, peptides, antibodies, and proteins are widely used. Of these, antibodies are well-established as remarkable molecules for detecting and monitoring a broad range of analytes. Recently, a novel class of molecules known as aptamers, often referred to as "artificial antibodies," has gained significant attention from researchers for numerous biomedical applications, particularly in biosensing. Aptamers are synthetic molecules generated through a method called Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Since aptamer and antibody have different bindings for target molecules, various biosensing techniques are utilized by using the combination of aptamer and antibody to enhance the biosensor. This combination possesses a unique and beneficial feature and holds the potential to drive significant advancements in sensing technology. Applying these combinations in biosensing technologies has some limitations due to the aptamer generation for some particular targets. This review explores recent applications of antibodies, aptamers, and their combined use in enhancing biosensing technologies and their limitations.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.