Predicting Coronary Heart Disease Using Data Mining and Machine Learning Solutions.

IF 1.1 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Anais da Academia Brasileira de Ciencias Pub Date : 2025-06-16 eCollection Date: 2025-01-01 DOI:10.1590/0001-3765202520240811
Vijai M Moorthy, Bhupal N Dharamsoth, Vijayalakshmi Muthukaruppan, Arul Elango, Kalaiarasi Ganesan
{"title":"Predicting Coronary Heart Disease Using Data Mining and Machine Learning Solutions.","authors":"Vijai M Moorthy, Bhupal N Dharamsoth, Vijayalakshmi Muthukaruppan, Arul Elango, Kalaiarasi Ganesan","doi":"10.1590/0001-3765202520240811","DOIUrl":null,"url":null,"abstract":"<p><p>This research focuses on predicting cardiovascular disease using machine learning classification strategies. The study presents a unique approach by integrating multiple machine learning techniques, leveraging the strengths of Random Forest and Gradient Boosting. The authors developed a novel ensemble learning model, combining Linear Regression, Random Forest, and Gradient Boosting algorithms, optimized using Bayesian hyperparameter tuning. The model demonstrated superior performance in predicting CVD outcomes, with classification accuracy of 95.5%, 94.26%, and 98.3% for Linear Regression, Decision Tree, and Gradient Boosted methods, respectively. The true positive rate for the GB algorithm's predictions of patients was 98.3%. The study hypothesizes that the GB method predicts the Framingham dataset better than other algorithms using 4240 samples.</p>","PeriodicalId":7776,"journal":{"name":"Anais da Academia Brasileira de Ciencias","volume":"97 3","pages":"e20240811"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais da Academia Brasileira de Ciencias","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1590/0001-3765202520240811","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This research focuses on predicting cardiovascular disease using machine learning classification strategies. The study presents a unique approach by integrating multiple machine learning techniques, leveraging the strengths of Random Forest and Gradient Boosting. The authors developed a novel ensemble learning model, combining Linear Regression, Random Forest, and Gradient Boosting algorithms, optimized using Bayesian hyperparameter tuning. The model demonstrated superior performance in predicting CVD outcomes, with classification accuracy of 95.5%, 94.26%, and 98.3% for Linear Regression, Decision Tree, and Gradient Boosted methods, respectively. The true positive rate for the GB algorithm's predictions of patients was 98.3%. The study hypothesizes that the GB method predicts the Framingham dataset better than other algorithms using 4240 samples.

使用数据挖掘和机器学习解决方案预测冠心病。
本研究的重点是使用机器学习分类策略预测心血管疾病。该研究通过整合多种机器学习技术,利用随机森林和梯度增强的优势,提出了一种独特的方法。作者开发了一种新的集成学习模型,结合了线性回归、随机森林和梯度增强算法,并使用贝叶斯超参数调谐进行了优化。该模型在预测心血管疾病预后方面表现优异,线性回归、决策树和梯度增强方法的分类准确率分别为95.5%、94.26%和98.3%。GB算法对患者预测的真阳性率为98.3%。该研究假设GB方法比使用4240个样本的其他算法更好地预测Framingham数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Anais da Academia Brasileira de Ciencias
Anais da Academia Brasileira de Ciencias 综合性期刊-综合性期刊
CiteScore
2.20
自引率
0.00%
发文量
347
审稿时长
1 months
期刊介绍: The Brazilian Academy of Sciences (BAS) publishes its journal, Annals of the Brazilian Academy of Sciences (AABC, in its Brazilianportuguese acronym ), every 3 months, being the oldest journal in Brazil with conkinuous distribukion, daking back to 1929. This scienkihic journal aims to publish the advances in scienkihic research from both Brazilian and foreigner scienkists, who work in the main research centers in the whole world, always looking for excellence. Essenkially a mulkidisciplinary journal, the AABC cover, with both reviews and original researches, the diverse areas represented in the Academy, such as Biology, Physics, Biomedical Sciences, Chemistry, Agrarian Sciences, Engineering, Mathemakics, Social, Health and Earth Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信