Quantum dual-branch neural networks with transfer learning for early detection of skin cancer.

IF 1.7 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
American journal of translational research Pub Date : 2025-05-15 eCollection Date: 2025-01-01 DOI:10.62347/WOHQ8174
Yuyang Sun, Xing Deng, Haijian Shao
{"title":"Quantum dual-branch neural networks with transfer learning for early detection of skin cancer.","authors":"Yuyang Sun, Xing Deng, Haijian Shao","doi":"10.62347/WOHQ8174","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate classification of skin cancer is critical for early detection and timely treatment, significantly improving patient survival rates. While quantum neural networks combined with transfer learning show promise in medical image analysis, quantum noise remains a major challenge, compromising the stability and reliability of these systems. This study aims to address this limitation by developing a robust quantum-based framework for skin cancer classification.</p><p><strong>Methods: </strong>We propose a Quantum Dual-Branch Neural Network (QDBNN) that employs two independently trained network branches without shared weights. Dual-modal features are fused at the fully connected layer, and a Variational Quantum Classifier (VQC) is utilized for final classification. The model is evaluated on two datasets: the multiclass HAM10000 and the binary Malignant vs. Benign dataset.</p><p><strong>Results: </strong>QDBNN achieved state-of-the-art accuracies of 93.6% on HAM10000 and 93.5% on the Malignant vs. Benign dataset, outperforming classical and quantum transfer learning baselines. The dual-branch architecture and weighted feature fusion demonstrated enhanced robustness against quantum noise while improving generalization.</p><p><strong>Conclusion: </strong>QDBNN effectively mitigates quantum noise interference and leverages quantum-classical hybrid advantages for skin cancer classification. Its success highlights the potential of quantum-inspired architectures in medical imaging, offering a pathway toward clinically deployable tools for early diagnosis. Future work will focus on hardware optimization and scalability to larger datasets.</p>","PeriodicalId":7731,"journal":{"name":"American journal of translational research","volume":"17 5","pages":"3357-3367"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12170388/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of translational research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/WOHQ8174","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Accurate classification of skin cancer is critical for early detection and timely treatment, significantly improving patient survival rates. While quantum neural networks combined with transfer learning show promise in medical image analysis, quantum noise remains a major challenge, compromising the stability and reliability of these systems. This study aims to address this limitation by developing a robust quantum-based framework for skin cancer classification.

Methods: We propose a Quantum Dual-Branch Neural Network (QDBNN) that employs two independently trained network branches without shared weights. Dual-modal features are fused at the fully connected layer, and a Variational Quantum Classifier (VQC) is utilized for final classification. The model is evaluated on two datasets: the multiclass HAM10000 and the binary Malignant vs. Benign dataset.

Results: QDBNN achieved state-of-the-art accuracies of 93.6% on HAM10000 and 93.5% on the Malignant vs. Benign dataset, outperforming classical and quantum transfer learning baselines. The dual-branch architecture and weighted feature fusion demonstrated enhanced robustness against quantum noise while improving generalization.

Conclusion: QDBNN effectively mitigates quantum noise interference and leverages quantum-classical hybrid advantages for skin cancer classification. Its success highlights the potential of quantum-inspired architectures in medical imaging, offering a pathway toward clinically deployable tools for early diagnosis. Future work will focus on hardware optimization and scalability to larger datasets.

基于迁移学习的量子双分支神经网络在皮肤癌早期检测中的应用。
背景:准确的皮肤癌分类对于早期发现和及时治疗至关重要,可以显著提高患者的生存率。虽然量子神经网络与迁移学习相结合在医学图像分析中显示出前景,但量子噪声仍然是一个主要挑战,影响了这些系统的稳定性和可靠性。本研究旨在通过开发一个强大的基于量子的皮肤癌分类框架来解决这一限制。方法:我们提出了一种量子双分支神经网络(QDBNN),它使用两个独立训练的网络分支,没有共享权值。在全连通层融合双模态特征,并利用变分量子分类器(VQC)进行最终分类。该模型在两个数据集上进行了评估:多类别HAM10000和二元恶性与良性数据集。结果:QDBNN在HAM10000和Malignant vs. Benign数据集上的准确率分别达到了93.6%和93.5%,优于经典和量子迁移学习基线。双分支结构和加权特征融合在提高泛化能力的同时增强了对量子噪声的鲁棒性。结论:QDBNN能有效减轻量子噪声干扰,利用量子经典杂化优势进行皮肤癌分类。它的成功凸显了量子架构在医学成像中的潜力,为早期诊断的临床部署工具提供了一条途径。未来的工作将集中在硬件优化和更大数据集的可扩展性上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
American journal of translational research
American journal of translational research ONCOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
自引率
0.00%
发文量
552
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信