Fang Guo, Zheng Ren, Shanchi Wang, Yu Xie, Jialin Pan, Jianying Huang, Tianxue Zhu, Si Cheng, Yuekun Lai
{"title":"Recent Progress of Electrospun Nanofiber-Based Composite Materials for Monitoring Physical, Physiological, and Body Fluid Signals.","authors":"Fang Guo, Zheng Ren, Shanchi Wang, Yu Xie, Jialin Pan, Jianying Huang, Tianxue Zhu, Si Cheng, Yuekun Lai","doi":"10.1007/s40820-025-01804-2","DOIUrl":null,"url":null,"abstract":"<p><p>Flexible electronic skin (E-skin) sensors offer innovative solutions for detecting human body signals, enabling human-machine interactions and advancing the development of intelligent robotics. Electrospun nanofibers are particularly well-suited for E-skin applications due to their exceptional mechanical properties, tunable breathability, and lightweight nature. Nanofiber-based composite materials consist of three-dimensional structures that integrate one-dimensional polymer nanofibers with other functional materials, enabling efficient signal conversion and positioning them as an ideal platform for next-generation intelligent electronics. Here, this review begins with an overview of electrospinning technology, including far-field electrospinning, near-field electrospinning, and melt electrospinning. It also discusses the diverse morphologies of electrospun nanofibers, such as core-shell, porous, hollow, bead, Janus, and ribbon structure, as well as strategies for incorporating functional materials to enhance nanofiber performance. Following this, the article provides a detailed introduction to electrospun nanofiber-based composite materials (i.e., nanofiber/hydrogel, nanofiber/aerogel, nanofiber/metal), emphasizing their recent advancements in monitoring physical, physiological, body fluid, and multi-signal in human signal detection. Meanwhile, the review explores the development of multimodal sensors capable of responding to diverse stimuli, focusing on innovative strategies for decoupling multiple signals and their state-of-the-art advancements. Finally, current challenges are analyzed, while future prospects for electrospun nanofiber-based composite sensors are outlined. This review aims to advance the design and application of next-generation flexible electronics, fostering breakthroughs in multifunctional sensing and health monitoring technologies.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":"302"},"PeriodicalIF":26.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177129/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-025-01804-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible electronic skin (E-skin) sensors offer innovative solutions for detecting human body signals, enabling human-machine interactions and advancing the development of intelligent robotics. Electrospun nanofibers are particularly well-suited for E-skin applications due to their exceptional mechanical properties, tunable breathability, and lightweight nature. Nanofiber-based composite materials consist of three-dimensional structures that integrate one-dimensional polymer nanofibers with other functional materials, enabling efficient signal conversion and positioning them as an ideal platform for next-generation intelligent electronics. Here, this review begins with an overview of electrospinning technology, including far-field electrospinning, near-field electrospinning, and melt electrospinning. It also discusses the diverse morphologies of electrospun nanofibers, such as core-shell, porous, hollow, bead, Janus, and ribbon structure, as well as strategies for incorporating functional materials to enhance nanofiber performance. Following this, the article provides a detailed introduction to electrospun nanofiber-based composite materials (i.e., nanofiber/hydrogel, nanofiber/aerogel, nanofiber/metal), emphasizing their recent advancements in monitoring physical, physiological, body fluid, and multi-signal in human signal detection. Meanwhile, the review explores the development of multimodal sensors capable of responding to diverse stimuli, focusing on innovative strategies for decoupling multiple signals and their state-of-the-art advancements. Finally, current challenges are analyzed, while future prospects for electrospun nanofiber-based composite sensors are outlined. This review aims to advance the design and application of next-generation flexible electronics, fostering breakthroughs in multifunctional sensing and health monitoring technologies.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.