Study on the dissolution and degradation patterns of cellulose in phosphonate-based ionic liquids and the construction of ternary phase diagrams.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jing Tian, Hongshuai Gao, Yan Long, Chenguang Wang, Binqi Wang, Ruimei Cao, Yi Nie
{"title":"Study on the dissolution and degradation patterns of cellulose in phosphonate-based ionic liquids and the construction of ternary phase diagrams.","authors":"Jing Tian, Hongshuai Gao, Yan Long, Chenguang Wang, Binqi Wang, Ruimei Cao, Yi Nie","doi":"10.1016/j.ijbiomac.2025.145321","DOIUrl":null,"url":null,"abstract":"<p><p>The growing demand for sustainable materials necessitates green solvents for cellulose fiber production. This study addresses the unclear mechanisms of phosphonate-based ionic liquids (ILs) in cellulose dissolution and regeneration, which limit their industrial application. Five phosphonate-based ILs were synthesized and characterized: 1-butyl-3-methylimidazolium methylphosphonate ([Bmim]MP), 1-ethyl-3-methylimidazolium dimethylphosphate ([Emim]DMP), 1-ethyl-3-methylimidazolium ethylphosphonate ([Emim]EP), 1-ethyl-3-methylimidazolium methylphosphonate ([Emim]MP), and 1,3-dimethylimidazolium methylphosphonate ([Mmim]MP). Polarized light microscopy images demonstrate that cellulose can be dissolved in these ILs at 60 °C. Molecular weight analysis revealed that degradation patterns are influenced by both time and temperature, and the extent of degradation was objectively ranked according to measured molecular weight changes. The strongest hydrogen bonding of [Emim]MP to cellulose was calculated using density functional theory, with a bond strength of 124.24 kJ/mol. The ternary phase diagram obtained from turbidimetric titration visualizes the effect of regeneration conditions on the process, where ion size and chain length influence the outcomes. Furthermore, the regeneration capabilities of each ternary system were validated by determining excess enthalpy during regeneration using the COSMO-RS method. This study provides data and theoretical references for applying phosphonate-based ILs in the spinning process.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"145321"},"PeriodicalIF":7.7000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.145321","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand for sustainable materials necessitates green solvents for cellulose fiber production. This study addresses the unclear mechanisms of phosphonate-based ionic liquids (ILs) in cellulose dissolution and regeneration, which limit their industrial application. Five phosphonate-based ILs were synthesized and characterized: 1-butyl-3-methylimidazolium methylphosphonate ([Bmim]MP), 1-ethyl-3-methylimidazolium dimethylphosphate ([Emim]DMP), 1-ethyl-3-methylimidazolium ethylphosphonate ([Emim]EP), 1-ethyl-3-methylimidazolium methylphosphonate ([Emim]MP), and 1,3-dimethylimidazolium methylphosphonate ([Mmim]MP). Polarized light microscopy images demonstrate that cellulose can be dissolved in these ILs at 60 °C. Molecular weight analysis revealed that degradation patterns are influenced by both time and temperature, and the extent of degradation was objectively ranked according to measured molecular weight changes. The strongest hydrogen bonding of [Emim]MP to cellulose was calculated using density functional theory, with a bond strength of 124.24 kJ/mol. The ternary phase diagram obtained from turbidimetric titration visualizes the effect of regeneration conditions on the process, where ion size and chain length influence the outcomes. Furthermore, the regeneration capabilities of each ternary system were validated by determining excess enthalpy during regeneration using the COSMO-RS method. This study provides data and theoretical references for applying phosphonate-based ILs in the spinning process.

纤维素在磷酸盐基离子液体中的溶解降解规律及三元相图的构建研究。
对可持续材料的需求日益增长,纤维素纤维生产需要绿色溶剂。本研究解决了磷酸盐基离子液体(ILs)在纤维素溶解和再生中的不明确机制,这限制了它们的工业应用。合成并表征了5种膦酸盐基il: 1-丁基-3-甲基咪唑甲基膦酸盐([Bmim]MP)、1-乙基-3-甲基咪唑甲基膦酸盐([Emim]DMP)、1-乙基-3-甲基咪唑甲基膦酸盐([Emim]EP)、1-乙基-3-甲基咪唑甲基膦酸盐([Emim]MP)和1,3-二甲基咪唑甲基膦酸盐([Mmim]MP)。偏振光显微镜图像表明,纤维素可以在60 °C时溶解在这些il中。分子量分析表明,降解模式受时间和温度的影响,并根据测量到的分子量变化客观地排序降解程度。利用密度泛函理论计算[Emim]MP与纤维素的最强氢键,其键强度为124.24 kJ/mol。从浊度滴定法得到的三元相图显示了再生条件对过程的影响,其中离子大小和链长度影响结果。此外,通过使用cosmos - rs方法测定再生过程中的多余焓,验证了每种三元体系的再生能力。本研究为在纺丝工艺中应用膦酸盐基il提供了数据和理论参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信