Yasser Zare, Muhammad Naqvi, Kyong Yop Rhee, Soo-Jin Park
{"title":"Strengthening efficacy of spherical starch nanoparticles and surrounding interphase in polymer nanocomposites.","authors":"Yasser Zare, Muhammad Naqvi, Kyong Yop Rhee, Soo-Jin Park","doi":"10.1016/j.ijbiomac.2025.145317","DOIUrl":null,"url":null,"abstract":"<p><p>Although extensive experimental data exist, modeling studies on the tensile strength of starch-filled nanocomposites remain incomplete, hindering the optimization of formulations. In this study, the Nicolais-Narkis model is modified and expanded by introducing the interfacial parameter a, enabling the estimation of tensile strength in starch-based nanocomposites. The enhanced model incorporates critical factors such as interphase thickness, interphase strength, and starch particle size. Experimental data from various starch-filled samples are utilized to validate the proposed model. Furthermore, parametric analyses are conducted to evaluate the influence of all relevant parameters on the interfacial parameter a and the overall strength of the nanocomposites. The results indicate that a starch radius (R) of 20 nm with an interphase depth (t) of 50 nm yields interface parameter (a) of 10, resulting in a 300 % improvement in nanocomposite strength. In contrast, R = 90 nm and t = 15 nm result in a < 0, offering no reinforcement. These findings underscore that smaller nanoparticles and a denser interphase significantly enhance nanocomposite strength. Conversely, larger nanoparticles and a thinner interphase fail to improve the mechanical properties. Additionally, the highest values of a and nanocomposite strength are achieved with the weakest polymer matrix and the most robust interphase. In contrast, a strong polymer matrix and a weak interphase lead to a < 0, resulting in no reinforcement.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"145317"},"PeriodicalIF":7.7000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.145317","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although extensive experimental data exist, modeling studies on the tensile strength of starch-filled nanocomposites remain incomplete, hindering the optimization of formulations. In this study, the Nicolais-Narkis model is modified and expanded by introducing the interfacial parameter a, enabling the estimation of tensile strength in starch-based nanocomposites. The enhanced model incorporates critical factors such as interphase thickness, interphase strength, and starch particle size. Experimental data from various starch-filled samples are utilized to validate the proposed model. Furthermore, parametric analyses are conducted to evaluate the influence of all relevant parameters on the interfacial parameter a and the overall strength of the nanocomposites. The results indicate that a starch radius (R) of 20 nm with an interphase depth (t) of 50 nm yields interface parameter (a) of 10, resulting in a 300 % improvement in nanocomposite strength. In contrast, R = 90 nm and t = 15 nm result in a < 0, offering no reinforcement. These findings underscore that smaller nanoparticles and a denser interphase significantly enhance nanocomposite strength. Conversely, larger nanoparticles and a thinner interphase fail to improve the mechanical properties. Additionally, the highest values of a and nanocomposite strength are achieved with the weakest polymer matrix and the most robust interphase. In contrast, a strong polymer matrix and a weak interphase lead to a < 0, resulting in no reinforcement.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.