{"title":"Advancing atomic electron tomography with neural networks.","authors":"Juhyeok Lee, Yongsoo Yang","doi":"10.1186/s42649-025-00113-7","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate determination of three-dimensional (3D) atomic structures is crucial for understanding and controlling the properties of nanomaterials. Atomic electron tomography (AET) offers non-destructive atomic imaging with picometer-level precision, enabling the resolution of defects, interfaces, and strain fields in 3D, as well as the observation of dynamic structural evolution. However, reconstruction artifacts arising from geometric limitations and electron dose constraints can hinder reliable atomic structure determination. Recent progress has integrated deep learning, especially convolutional neural networks, into AET workflows to improve reconstruction fidelity. This review highlights recent advances in neural network-assisted AET, emphasizing its role in overcoming persistent challenges in 3D atomic imaging. By significantly enhancing the accuracy of both surface and bulk structural characterization, these methods are advancing the frontiers of nanoscience and enabling new opportunities in materials research and technology.</p>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"55 1","pages":"7"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177128/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42649-025-00113-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate determination of three-dimensional (3D) atomic structures is crucial for understanding and controlling the properties of nanomaterials. Atomic electron tomography (AET) offers non-destructive atomic imaging with picometer-level precision, enabling the resolution of defects, interfaces, and strain fields in 3D, as well as the observation of dynamic structural evolution. However, reconstruction artifacts arising from geometric limitations and electron dose constraints can hinder reliable atomic structure determination. Recent progress has integrated deep learning, especially convolutional neural networks, into AET workflows to improve reconstruction fidelity. This review highlights recent advances in neural network-assisted AET, emphasizing its role in overcoming persistent challenges in 3D atomic imaging. By significantly enhancing the accuracy of both surface and bulk structural characterization, these methods are advancing the frontiers of nanoscience and enabling new opportunities in materials research and technology.
Applied MicroscopyImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
3.40
自引率
0.00%
发文量
10
审稿时长
10 weeks
期刊介绍:
Applied Microscopy is a peer-reviewed journal sponsored by the Korean Society of Microscopy. The journal covers all the interdisciplinary fields of technological developments in new microscopy methods and instrumentation and their applications to biological or materials science for determining structure and chemistry. ISSN: 22875123, 22874445.