A High-Throughput Investigation of the Binding Specificity of Carbohydrate-Binding Modules for Synthetic and Natural Polymers.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-06-19 DOI:10.1002/cssc.202500468
Andrew Philip Rennison, Jaime Fernandez-Macgregor, Julie Melot, Fabien Durbesson, Tobias Tandrup, Peter Westh, Renaud Vincentelli, Marie Sofie Møller
{"title":"A High-Throughput Investigation of the Binding Specificity of Carbohydrate-Binding Modules for Synthetic and Natural Polymers.","authors":"Andrew Philip Rennison, Jaime Fernandez-Macgregor, Julie Melot, Fabien Durbesson, Tobias Tandrup, Peter Westh, Renaud Vincentelli, Marie Sofie Møller","doi":"10.1002/cssc.202500468","DOIUrl":null,"url":null,"abstract":"<p><p>Carbohydrate-binding modules (CBMs) are noncatalytic domains that enhance enzyme binding to substrates. Type A CBMs show potential for engineering plastic-degrading enzymes due to their affinity for synthetic polymers. This study presents a high-throughput screening pipeline for characterizing the affinity and specificity of type A CBMs towards the synthetic polymers polyethylene terephthalate (PET), polystyrene (PS), and polyethylene (PE), and the polysaccharides cellulose, chitin, and starch. ≈800 CBMs from the families CBM2, CBM3, CBM10, and CBM64 are expressed as green fluorescent protein (GFP)-fusion proteins and tested for binding using a modified holdup assay, which produced up to 10 000 data points per day. The screening identifies ≈150 binders for PET and PE, around 250 for PS, and demonstrates family-specific binding patterns for avicel, chitin, and starch. To demonstrate practical utility, four CBMs with high PET affinity are fused to the PET hydrolase LCC<sup>ICCG</sup>, enhancing activity on PET powder by around 5-fold. These CBM-enzyme fusions mitigate competitive binding to plastic impurities, improving performance in mixed plastic assays. This work significantly expands the repertoire of CBMs binding to synthetic polymers, advances our understanding of CBM-substrate interactions, and provides knowledge for engineering enzymes to tackle plastic pollution, particularly where mixed plastics pose significant challenges.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500468"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500468","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbohydrate-binding modules (CBMs) are noncatalytic domains that enhance enzyme binding to substrates. Type A CBMs show potential for engineering plastic-degrading enzymes due to their affinity for synthetic polymers. This study presents a high-throughput screening pipeline for characterizing the affinity and specificity of type A CBMs towards the synthetic polymers polyethylene terephthalate (PET), polystyrene (PS), and polyethylene (PE), and the polysaccharides cellulose, chitin, and starch. ≈800 CBMs from the families CBM2, CBM3, CBM10, and CBM64 are expressed as green fluorescent protein (GFP)-fusion proteins and tested for binding using a modified holdup assay, which produced up to 10 000 data points per day. The screening identifies ≈150 binders for PET and PE, around 250 for PS, and demonstrates family-specific binding patterns for avicel, chitin, and starch. To demonstrate practical utility, four CBMs with high PET affinity are fused to the PET hydrolase LCCICCG, enhancing activity on PET powder by around 5-fold. These CBM-enzyme fusions mitigate competitive binding to plastic impurities, improving performance in mixed plastic assays. This work significantly expands the repertoire of CBMs binding to synthetic polymers, advances our understanding of CBM-substrate interactions, and provides knowledge for engineering enzymes to tackle plastic pollution, particularly where mixed plastics pose significant challenges.

碳水化合物结合模块对合成和天然聚合物结合特异性的高通量研究。
碳水化合物结合模块(CBMs)是增强酶与底物结合的非催化结构域。A型CBMs由于其对合成聚合物的亲和力而显示出工程塑料降解酶的潜力。本研究提出了一种高通量筛选管道,用于表征a型CBMs对合成聚合物聚对苯二甲酸乙二醇酯(PET)、聚苯乙烯(PS)和聚乙烯(PE)以及多糖纤维素、几丁质和淀粉的亲和力和特异性。来自CBM2、CBM3、CBM10和CBM64家族的大约800个CBMs被表达为绿色荧光蛋白(GFP)融合蛋白,并使用改进的保持试验进行结合测试,该试验每天产生多达10,000个数据点。筛选确定了大约150种PET和PE结合物,大约250种PS结合物,并展示了avicel,几丁质和淀粉的家族特异性结合模式。为了证明其实用性,将4个具有高PET亲和力的CBMs与PET水解酶LCCICCG融合,将PET粉末的活性提高了约5倍。这些cbm -酶融合物减轻了与塑料杂质的竞争性结合,提高了混合塑料分析的性能。这项工作极大地扩展了CBMs与合成聚合物结合的范围,提高了我们对cbm -底物相互作用的理解,并为工程酶解决塑料污染提供了知识,特别是在混合塑料构成重大挑战的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信