{"title":"Uniform Spray-Coated Flexible SERS Substrates for Enhanced Molecular Detection.","authors":"Shen Wang, Zhaoxin Wang, Xiaoxu Cao, Gang Wang, Rongshen Guo, Yemawaysh Zewdie, Shengkai Li, Liang Zhang, Qian Dong, Zhuo Chen","doi":"10.1002/asia.202500405","DOIUrl":null,"url":null,"abstract":"<p><p>Regulating uniformity and stability of substrates remains a key challenge in developments of flexible surface enhanced Raman spectroscopy (SERS) sensors. Herein, we fabricated a flexible SERS platform by integrating ultra-stable nitrogen-doped graphite-coated gold nanoparticles (Au@NG) with a polydimethylsiloxane (PDMS) film via optimized microarray spray-coating techniques, forming a composite substrate denoted as Au@NG@PDMS. The structure and chemical stability of the Au@NG nanoparticles were confirmed by TEM and Raman spectroscopy. The presence of a thin, nitrogen-doped graphite shell effectively protected the Au core against acidic, alkaline, and oxidative environments. Benefiting from the superior mechanical flexibility of PDMS, the Au@NG@PDMS substrate maintained excellent SERS signal reproducibility under repeated bending and stretching cycles. Furthermore, we demonstrated that adjusting the solvent evaporation rate by selecting solvents in spraying process significantly improved the uniformity, reproducibility, and overall SERS performance of the substrate. Using this platform, we achieved highly sensitive and quantitative detection of crystal violet across a concentration range from 10 nM to 10 µM and successfully identified trace levels (20 ng/mL) of thiram residues directly on the surface of apples. The resulting flexible SERS substrate exhibits outstanding structural stability, signal uniformity, and surface conformability making it highly promising for practical applications in on-site pesticide residue detection in agricultural monitoring.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e00405"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202500405","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Regulating uniformity and stability of substrates remains a key challenge in developments of flexible surface enhanced Raman spectroscopy (SERS) sensors. Herein, we fabricated a flexible SERS platform by integrating ultra-stable nitrogen-doped graphite-coated gold nanoparticles (Au@NG) with a polydimethylsiloxane (PDMS) film via optimized microarray spray-coating techniques, forming a composite substrate denoted as Au@NG@PDMS. The structure and chemical stability of the Au@NG nanoparticles were confirmed by TEM and Raman spectroscopy. The presence of a thin, nitrogen-doped graphite shell effectively protected the Au core against acidic, alkaline, and oxidative environments. Benefiting from the superior mechanical flexibility of PDMS, the Au@NG@PDMS substrate maintained excellent SERS signal reproducibility under repeated bending and stretching cycles. Furthermore, we demonstrated that adjusting the solvent evaporation rate by selecting solvents in spraying process significantly improved the uniformity, reproducibility, and overall SERS performance of the substrate. Using this platform, we achieved highly sensitive and quantitative detection of crystal violet across a concentration range from 10 nM to 10 µM and successfully identified trace levels (20 ng/mL) of thiram residues directly on the surface of apples. The resulting flexible SERS substrate exhibits outstanding structural stability, signal uniformity, and surface conformability making it highly promising for practical applications in on-site pesticide residue detection in agricultural monitoring.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).