Repair of spinal cord injury using a time-specific four-dimensional multifunctional hydrogel with anti-inflammatory and neuronal differentiated microenvironments.
{"title":"Repair of spinal cord injury using a time-specific four-dimensional multifunctional hydrogel with anti-inflammatory and neuronal differentiated microenvironments.","authors":"Ruizhi Zhang, Chenbo Zou, Linlin Jiang, Baoshuai Bai, Chunlin Li, Chi Zhang, Hua Zhao, Shaohui Zong, Hao Li, Kai Jiang, Hengxing Zhou, Shiqing Feng","doi":"10.1039/d4bm01586j","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a severe central nervous system (CNS) condition that often leads to permanent disability. The repair of SCI presents significant challenges globally, primarily due to serious inflammatory damage in the early stage and limited neural regeneration in the long-term stage. In response to these challenges, this study developed a novel time-specific four-dimensional multifunctional SilMA hydrogel (4DMSH) that releases <i>Houttuynia cordata</i> extract (HCT) in the early stage of post-implantation to combat inflammation and a sustained release of neurotrophin-3 (NT-3) in the long-term stage to promote neuronal differentiation of endogenous neural stem cells (eNSCs) for neuronal regeneration. As expected, the time-specific 4DMSH significantly mitigated inflammatory responses, leading to a shift from a pro-inflammatory to a neural regenerative environment, and enhanced the differentiation of eNSCs into neurons, thereby effectively improving the recovery of motor, sensory, and autonomic functions after SCI. Therefore, this study presents a novel time-specific 4DMSH that creates anti-inflammatory and neuroactive microenvironments, contributing to efficient neuronal regeneration and SCI repair.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01586j","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal cord injury (SCI) is a severe central nervous system (CNS) condition that often leads to permanent disability. The repair of SCI presents significant challenges globally, primarily due to serious inflammatory damage in the early stage and limited neural regeneration in the long-term stage. In response to these challenges, this study developed a novel time-specific four-dimensional multifunctional SilMA hydrogel (4DMSH) that releases Houttuynia cordata extract (HCT) in the early stage of post-implantation to combat inflammation and a sustained release of neurotrophin-3 (NT-3) in the long-term stage to promote neuronal differentiation of endogenous neural stem cells (eNSCs) for neuronal regeneration. As expected, the time-specific 4DMSH significantly mitigated inflammatory responses, leading to a shift from a pro-inflammatory to a neural regenerative environment, and enhanced the differentiation of eNSCs into neurons, thereby effectively improving the recovery of motor, sensory, and autonomic functions after SCI. Therefore, this study presents a novel time-specific 4DMSH that creates anti-inflammatory and neuroactive microenvironments, contributing to efficient neuronal regeneration and SCI repair.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.