Ibtesam Sleem, Abby Rodriguez, Bingqi Chen, Ramasamy Perumal, Jaymi Peterson, Adina L. Santana, Dmitriy Smolensky, Vermont P. Dia
{"title":"Phenolic Ethanolic Extracts of Specialty Sorghum Ameliorate Intestinal Colitis and Inflammation Induced by Dextran Sulfate Sodium in Mice","authors":"Ibtesam Sleem, Abby Rodriguez, Bingqi Chen, Ramasamy Perumal, Jaymi Peterson, Adina L. Santana, Dmitriy Smolensky, Vermont P. Dia","doi":"10.1002/biof.70028","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Recently, sorghum [<i>Sorghum bicolor</i> (L.) Moench] has been given great attention as an excellent source of polyphenols that exhibit protective effects against multiple chronic disease models. Ulcerative colitis (UC) is strongly linked to the incidence of colon cancer and other intestinal chronic diseases. This study aimed to determine the ability of sorghum ethanolic phenolic extracts (SEPEs) to mitigate intestinal colitis and inflammation induced by dextran sulfate sodium (DSS) in a mice model. Forty C57BL/6 male mice were randomly assigned to one of the experimental groups: negative control, positive control (DSS only), and three groups given SEPEs containing (100 μg gallic acid eq/mL) from specialty brown sorghum accession SC84 grains (BSG) and leaves (BSL) from the same brown cultivar, and white sorghum grains (WSG). SEPEs-fed groups showed a significant reduction of the inflammatory cytokines including IL-6, TNF-alpha, and IL-1-beta in the plasma and colon, colonic disease activity index values, and fecal hemoglobin content compared to the DSS group (<i>p</i> ≤ 0.001). Furthermore, SEPEs mitigated neutrophil infiltration by inhibiting myeloperoxidase activity in the colon and enhancing intestinal integrity by upregulation of tight junction proteins' production such as ZO-1 and claudin-7. Histopathological results showed an improvement in mucosal structure and colon morphology under SEPE uptake. BSL extract exhibited a better effect against DSS compared to BSG and WSG. Metabolomic and enrichment analyses of plasma showed that SEPEs effectively recovered the disrupted metabolomic profiling in UC via modulating key pathways associated with colitis-related inflammation and oxidative stress such as bile acids metabolism, amino acids metabolism, and taurine and hypotaurine metabolism. SEPEs ameliorate colonic colitis and inflammation by suppressing proinflammatory cytokines production, neutrophil infiltration, and enhancement of intestinal integrity and functionality. Thus, specialty sorghum phenolics represent a potential alternative to mitigate colonic inflammation and colitis.</p>\n </div>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":"51 3","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biof.70028","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, sorghum [Sorghum bicolor (L.) Moench] has been given great attention as an excellent source of polyphenols that exhibit protective effects against multiple chronic disease models. Ulcerative colitis (UC) is strongly linked to the incidence of colon cancer and other intestinal chronic diseases. This study aimed to determine the ability of sorghum ethanolic phenolic extracts (SEPEs) to mitigate intestinal colitis and inflammation induced by dextran sulfate sodium (DSS) in a mice model. Forty C57BL/6 male mice were randomly assigned to one of the experimental groups: negative control, positive control (DSS only), and three groups given SEPEs containing (100 μg gallic acid eq/mL) from specialty brown sorghum accession SC84 grains (BSG) and leaves (BSL) from the same brown cultivar, and white sorghum grains (WSG). SEPEs-fed groups showed a significant reduction of the inflammatory cytokines including IL-6, TNF-alpha, and IL-1-beta in the plasma and colon, colonic disease activity index values, and fecal hemoglobin content compared to the DSS group (p ≤ 0.001). Furthermore, SEPEs mitigated neutrophil infiltration by inhibiting myeloperoxidase activity in the colon and enhancing intestinal integrity by upregulation of tight junction proteins' production such as ZO-1 and claudin-7. Histopathological results showed an improvement in mucosal structure and colon morphology under SEPE uptake. BSL extract exhibited a better effect against DSS compared to BSG and WSG. Metabolomic and enrichment analyses of plasma showed that SEPEs effectively recovered the disrupted metabolomic profiling in UC via modulating key pathways associated with colitis-related inflammation and oxidative stress such as bile acids metabolism, amino acids metabolism, and taurine and hypotaurine metabolism. SEPEs ameliorate colonic colitis and inflammation by suppressing proinflammatory cytokines production, neutrophil infiltration, and enhancement of intestinal integrity and functionality. Thus, specialty sorghum phenolics represent a potential alternative to mitigate colonic inflammation and colitis.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.