Shiwei Xia, Zizheng Wang, Yidan Wang, Mingfei Ban, Ye Tian, Jelena Stojković Terzić, Xi Lu
{"title":"Collaborative Energy Schedule of Highway Cluster Microgrids Considering SPEV and Portable Battery Packs Operation Flexibility","authors":"Shiwei Xia, Zizheng Wang, Yidan Wang, Mingfei Ban, Ye Tian, Jelena Stojković Terzić, Xi Lu","doi":"10.1049/rpg2.70080","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a strategic method for optimizing energy distribution in highway cluster microgrids. It employs a model that synchronizes the energy usage of shared power-exchanging vehicles (SPEVs) with their spatial and temporal dynamics, while prioritizing the operational safety of the microgrids. The strategy begins with applying the DistFlow power flow equation to define the microgrid's voltage and line capacity limits, aligning the energy use of SPEVs and battery packs both temporally and spatially. A comprehensive cost analysis is then conducted, covering aspects like line losses, unit start–stop expenses, and carbon emission costs. Following this, we develop an energy-scheduling model tailored for highway microgrids, which upholds operational safety and promotes energy sharing among the grid. A case study illustrates the effectiveness of this strategy, showing it not only optimizes SPEV routes and power outputs from distributed generators and battery packs but also achieves cost-effective, efficient, and eco-friendly energy use in highway microgrids.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.70080","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.70080","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a strategic method for optimizing energy distribution in highway cluster microgrids. It employs a model that synchronizes the energy usage of shared power-exchanging vehicles (SPEVs) with their spatial and temporal dynamics, while prioritizing the operational safety of the microgrids. The strategy begins with applying the DistFlow power flow equation to define the microgrid's voltage and line capacity limits, aligning the energy use of SPEVs and battery packs both temporally and spatially. A comprehensive cost analysis is then conducted, covering aspects like line losses, unit start–stop expenses, and carbon emission costs. Following this, we develop an energy-scheduling model tailored for highway microgrids, which upholds operational safety and promotes energy sharing among the grid. A case study illustrates the effectiveness of this strategy, showing it not only optimizes SPEV routes and power outputs from distributed generators and battery packs but also achieves cost-effective, efficient, and eco-friendly energy use in highway microgrids.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf