Predeployment Calibration Framework for Low-Cost Gas Sensors: An Adaptive Environmental Parameter Model

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Inesh Dheer;Shreyas Mehta;Srikar Somanchi;Alan Nelson;Abhishek Srivastava
{"title":"Predeployment Calibration Framework for Low-Cost Gas Sensors: An Adaptive Environmental Parameter Model","authors":"Inesh Dheer;Shreyas Mehta;Srikar Somanchi;Alan Nelson;Abhishek Srivastava","doi":"10.1109/LSENS.2025.3576152","DOIUrl":null,"url":null,"abstract":"Reliable toxic gas detection is vital for residential and industrial safety. While precise sensors are expensive, affordable ones face challenges of nonlinearity and environmental sensitivity, particularly from temperature (<inline-formula><tex-math>$T$</tex-math></inline-formula>) and humidity (<inline-formula><tex-math>$H$</tex-math></inline-formula>) effects. In this work, we present a novel predeployment calibration framework that accounts for these environmental factors on the sensor behavior, given by the resistance ratio (<inline-formula><tex-math>$R_{s}/R_{o}$</tex-math></inline-formula>) at constant gas concentration levels. The proposed method first refines the baseline resistance (<inline-formula><tex-math>$R_{s}$</tex-math></inline-formula>) estimation by fitting a power-law model to known gas concentrations and then applies a cubic regression model to capture the nonlinear effects of temperature and humidity on the <inline-formula><tex-math>$R_{s}/R_{o}$</tex-math></inline-formula> ratio. Cubic regression achieves superior accuracy (>5.8%) over lower order models while reducing over-fitting risks compared to higher order polynomials. It achieves 99.65% average accuracy, outperforming the 96.73% from standard libraries. This improved performance is particularly notable at low ppm levels, where direct <inline-formula><tex-math>$R_{s}$</tex-math></inline-formula> measurements are typically noisy and unstable. The enhanced stability and accuracy of the proposed method were validated over a continuous 90-min test period.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 7","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11022737/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Reliable toxic gas detection is vital for residential and industrial safety. While precise sensors are expensive, affordable ones face challenges of nonlinearity and environmental sensitivity, particularly from temperature ($T$) and humidity ($H$) effects. In this work, we present a novel predeployment calibration framework that accounts for these environmental factors on the sensor behavior, given by the resistance ratio ($R_{s}/R_{o}$) at constant gas concentration levels. The proposed method first refines the baseline resistance ($R_{s}$) estimation by fitting a power-law model to known gas concentrations and then applies a cubic regression model to capture the nonlinear effects of temperature and humidity on the $R_{s}/R_{o}$ ratio. Cubic regression achieves superior accuracy (>5.8%) over lower order models while reducing over-fitting risks compared to higher order polynomials. It achieves 99.65% average accuracy, outperforming the 96.73% from standard libraries. This improved performance is particularly notable at low ppm levels, where direct $R_{s}$ measurements are typically noisy and unstable. The enhanced stability and accuracy of the proposed method were validated over a continuous 90-min test period.
低成本气体传感器预部署校准框架:一种自适应环境参数模型
可靠的有毒气体检测对住宅和工业安全至关重要。虽然精密传感器价格昂贵,但价格合理的传感器面临着非线性和环境敏感性的挑战,特别是来自温度(T$)和湿度(H$)的影响。在这项工作中,我们提出了一种新的预部署校准框架,该框架考虑了恒定气体浓度水平下电阻比($R_{s}/R_{o}$)对传感器行为的这些环境因素。该方法首先通过拟合已知气体浓度的幂律模型来改进基线电阻($R_{s}$)估计,然后应用三次回归模型来捕获温度和湿度对$R_{s}/R_{o}$比率的非线性影响。三次回归实现了优于低阶模型的精度(>5.8%),同时减少了与高阶多项式相比的过拟合风险。它的平均准确率达到99.65%,优于标准库的96.73%。这种改进的性能在低ppm水平下尤其显著,因为直接的R_{s}$测量通常是嘈杂和不稳定的。在连续90分钟的测试周期中验证了该方法的稳定性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信