Mirado Rajaomarosata, Luc Jaulin, Lionel Lapierre, Simon Rohou
{"title":"Natural efficient gaits from Nonholonomic Locomotion Nonlinear Normal Mode (NL-NNM): The Pendrivencar case","authors":"Mirado Rajaomarosata, Luc Jaulin, Lionel Lapierre, Simon Rohou","doi":"10.1016/j.mechatronics.2025.103366","DOIUrl":null,"url":null,"abstract":"<div><div>Bio-inspired robots remain far less energy-efficient than animals because conventional controllers impose trajectories that fight passive dynamics, whereas animals exploit resonance through <em>natural nonlinear normal modes (NNM)</em>, whose periodic internal motions form a smooth 2D invariant surface; We ask how to define and compute the <em>natural motions of a conservative locomotion system</em>: propulsion arises only from <em>no-slip constraints</em>, and once initiated, a gait persists without actuation—like a frictionless pendulum. We tackle non-holonomic constraints on the <em>Pendrivencar</em>, a vehicle driven by a <em>motorised pendulum with a cubic torsional spring</em>; We introduce the <strong>Nonholonomic Locomotion - NNM (NL-NNM)</strong>: extract a <em>high-speed spectral seed</em> – where chassis oscillations vanish and the pendulum is neutrally stable – refine the periodic orbit, and continue the resulting <em>2D invariant manifold</em> via pseudo-arclength across <em>three slow centre manifolds</em> (stable for positive speed, neutral at zero, unstable for negative) from non-isolated rectilinear equilibria; We demonstrate the first NL-NNM for a moving non-holonomic robot: internal orbits produce a <em>pendulum–chassis choreography</em> whose <em>energy-dependent frequency shifts</em> and <em>harmonic richness</em> exceed linear predictions. Via <em>geometric phase</em>, each orbit yields undulatory straight-line motion. A <em>dual-loop control simulation</em> confirms autonomous path tracking with only the pendulum; Extending to dissipative regimes via <em>non-linear resonant modes</em> offers a path to high-efficiency locomotion in aquatic, aerial, legged, soft-bodied, and other robots.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103366"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415825000753","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Bio-inspired robots remain far less energy-efficient than animals because conventional controllers impose trajectories that fight passive dynamics, whereas animals exploit resonance through natural nonlinear normal modes (NNM), whose periodic internal motions form a smooth 2D invariant surface; We ask how to define and compute the natural motions of a conservative locomotion system: propulsion arises only from no-slip constraints, and once initiated, a gait persists without actuation—like a frictionless pendulum. We tackle non-holonomic constraints on the Pendrivencar, a vehicle driven by a motorised pendulum with a cubic torsional spring; We introduce the Nonholonomic Locomotion - NNM (NL-NNM): extract a high-speed spectral seed – where chassis oscillations vanish and the pendulum is neutrally stable – refine the periodic orbit, and continue the resulting 2D invariant manifold via pseudo-arclength across three slow centre manifolds (stable for positive speed, neutral at zero, unstable for negative) from non-isolated rectilinear equilibria; We demonstrate the first NL-NNM for a moving non-holonomic robot: internal orbits produce a pendulum–chassis choreography whose energy-dependent frequency shifts and harmonic richness exceed linear predictions. Via geometric phase, each orbit yields undulatory straight-line motion. A dual-loop control simulation confirms autonomous path tracking with only the pendulum; Extending to dissipative regimes via non-linear resonant modes offers a path to high-efficiency locomotion in aquatic, aerial, legged, soft-bodied, and other robots.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.