Gabriel's problem for harmonic Hardy spaces

IF 1.2 3区 数学 Q1 MATHEMATICS
Suman Das
{"title":"Gabriel's problem for harmonic Hardy spaces","authors":"Suman Das","doi":"10.1016/j.jmaa.2025.129816","DOIUrl":null,"url":null,"abstract":"<div><div>We obtain inequalities of the form<span><span><span><math><munder><mo>∫</mo><mrow><mi>C</mi></mrow></munder><mo>|</mo><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mspace></mspace><mo>|</mo><mi>d</mi><mi>z</mi><mo>|</mo><mo>≤</mo><mi>A</mi><mo>(</mo><mi>p</mi><mo>)</mo><munder><mo>∫</mo><mrow><mi>T</mi></mrow></munder><mo>|</mo><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mspace></mspace><mo>|</mo><mi>d</mi><mi>z</mi><mo>|</mo><mspace></mspace><mo>(</mo><mi>p</mi><mo>&gt;</mo><mn>1</mn><mo>)</mo><mo>,</mo></math></span></span></span> where <em>f</em> is harmonic in the unit disk <span><math><mi>D</mi></math></span>, <span><math><mi>T</mi></math></span> is the unit circle, and <em>C</em> is any convex curve in <span><math><mi>D</mi></math></span>. Such inequalities were originally studied for analytic functions by R.M. Gabriel (1928) <span><span>[11]</span></span>. We show that, unlike in the case of analytic functions, such inequalities cannot be true in general for <span><math><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mn>1</mn></math></span>. Therefore, we produce an inequality of a slightly different type, which deals with the case <span><math><mn>0</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>1</mn></math></span>. An example is given to show that this result is “best possible”, in the sense that an extension to <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span> fails. Then we consider the special case when <em>C</em> is a circle, and prove a refined result that curiously holds for <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span> as well. We conclude with a maximal theorem which has potential applications.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129816"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005979","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain inequalities of the formC|f(z)|p|dz|A(p)T|f(z)|p|dz|(p>1), where f is harmonic in the unit disk D, T is the unit circle, and C is any convex curve in D. Such inequalities were originally studied for analytic functions by R.M. Gabriel (1928) [11]. We show that, unlike in the case of analytic functions, such inequalities cannot be true in general for 0<p1. Therefore, we produce an inequality of a slightly different type, which deals with the case 0<p<1. An example is given to show that this result is “best possible”, in the sense that an extension to p=1 fails. Then we consider the special case when C is a circle, and prove a refined result that curiously holds for p=1 as well. We conclude with a maximal theorem which has potential applications.
加布里埃尔的调和Hardy空间问题
我们得到了∫C|f(z)|p|dz|≤A(p)∫T|f(z)|p|dz|(p>1)的不等式,其中f是单位圆盘D中的调和函数,T是单位圆,C是D中的任意凸曲线。这种不等式最初由R.M. Gabriel(1928)[11]研究。我们证明,与解析函数的情况不同,对于0<;p≤1,这样的不等式一般不成立。因此,我们产生一个稍微不同类型的不等式,它处理0<;p<;1的情况。给出了一个例子来证明这个结果是“最佳可能”的,在这个意义上,扩展到p=1失败。然后我们考虑C是圆的特殊情况,并证明一个改进的结果,奇怪的是,它也适用于p=1。我们得到了一个具有潜在应用价值的极大定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信