Automorphisms of subalgebras of bounded analytic functions

IF 1.2 3区 数学 Q1 MATHEMATICS
Kanha Behera, Rahul Maurya, P. Muthukumar
{"title":"Automorphisms of subalgebras of bounded analytic functions","authors":"Kanha Behera,&nbsp;Rahul Maurya,&nbsp;P. Muthukumar","doi":"10.1016/j.jmaa.2025.129804","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> denote the algebra of all bounded analytic functions on the unit disk. It is well-known that every (algebra) automorphism of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> is a composition operator induced by disc automorphism. Maurya et al., (J. Math. Anal. Appl. 530: Paper No: 127698, 2024) proved that every automorphism of the subalgebras <span><math><mo>{</mo><mi>f</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>:</mo><mi>f</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn><mo>}</mo></math></span> or <span><math><mo>{</mo><mi>f</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>:</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn><mo>}</mo></math></span> is a composition operator induced by a rotation. In this article, we give very simple proof of their results. As an interesting generalization, for any <span><math><mi>ψ</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>, we show that every automorphism of <span><math><mi>ψ</mi><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> must be a composition operator and characterize all such composition operators. Using this characterization, we find all automorphism of <span><math><mi>ψ</mi><msup><mrow><mi>H</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> for few choices of <em>ψ</em> with various nature depending on its zeros.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129804"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005852","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let H denote the algebra of all bounded analytic functions on the unit disk. It is well-known that every (algebra) automorphism of H is a composition operator induced by disc automorphism. Maurya et al., (J. Math. Anal. Appl. 530: Paper No: 127698, 2024) proved that every automorphism of the subalgebras {fH:f(0)=0} or {fH:f(0)=0} is a composition operator induced by a rotation. In this article, we give very simple proof of their results. As an interesting generalization, for any ψH, we show that every automorphism of ψH must be a composition operator and characterize all such composition operators. Using this characterization, we find all automorphism of ψH for few choices of ψ with various nature depending on its zeros.
有界解析函数的子代数的自同构
设H∞表示单位圆盘上所有有界解析函数的代数。众所周知,H∞上的每一个(代数)自同构都是由盘自同构引起的复合算子。(J.数学)。分析的。证明了子代数{f∈H∞:f(0)=0}或{f∈H∞:f '(0)=0}的每一个自同构是一个由旋转诱导的复合算子。在这篇文章中,我们给出了非常简单的证明。作为一个有趣的推广,对于任意ψ∈H∞,我们证明了ψH∞的每一个自同构必须是一个复合算子,并且刻画了所有这样的复合算子。利用这一表征,我们找到了对于不同性质的少量ψ的所有自同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信