Hierarchies in relative Picard-Lefschetz theory

IF 1.2 3区 数学 Q1 MATHEMATICS
Marko Berghoff , Erik Panzer
{"title":"Hierarchies in relative Picard-Lefschetz theory","authors":"Marko Berghoff ,&nbsp;Erik Panzer","doi":"10.1016/j.geomphys.2025.105539","DOIUrl":null,"url":null,"abstract":"<div><div>We prove a relative version of the Picard-Lefschetz theorem, describing the variation of relative homology groups <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>∖</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>∖</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></math></span> in the fibers of a smooth fiber bundle <span><math><mi>Y</mi><mo>→</mo><mi>T</mi></math></span> of complex manifolds with <span><math><mi>A</mi><mo>∪</mo><mi>B</mi><mo>⊂</mo><mi>Y</mi></math></span> transverse. From this we derive the vanishing of certain iterated variations, a system of constraints dubbed “hierarchy”.</div><div>As applications, we rederive the known analytic structure of Aomoto polylogarithms and massive one loop Feynman integrals. Moreover, we introduce the “simple type” to prove hierarchy constraints in degenerate cases where the Picard-Lefschetz formula does not apply, e.g. the massless triangle or the ice cream cone Feynman diagram. We compare our findings with a “classical” hierarchy of iterated variations (from 1960's <em>S</em>-matrix theory) and show how our setup not only explains, but also refines the latter. In order to do so, we need to further resolve the geometry of Feynman motives: We boldly blow up what no one has blown up before.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105539"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001238","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a relative version of the Picard-Lefschetz theorem, describing the variation of relative homology groups Hd(YtAt,BtAt) in the fibers of a smooth fiber bundle YT of complex manifolds with ABY transverse. From this we derive the vanishing of certain iterated variations, a system of constraints dubbed “hierarchy”.
As applications, we rederive the known analytic structure of Aomoto polylogarithms and massive one loop Feynman integrals. Moreover, we introduce the “simple type” to prove hierarchy constraints in degenerate cases where the Picard-Lefschetz formula does not apply, e.g. the massless triangle or the ice cream cone Feynman diagram. We compare our findings with a “classical” hierarchy of iterated variations (from 1960's S-matrix theory) and show how our setup not only explains, but also refines the latter. In order to do so, we need to further resolve the geometry of Feynman motives: We boldly blow up what no one has blown up before.
相对皮卡德-莱夫谢兹理论中的层次结构
我们证明了Picard-Lefschetz定理的一个相对版本,描述了a∪B∧Y横的复流形的光滑纤维束Y→T的纤维中相对同调群Hd(Yt∈At,Bt∈At)的变化。由此我们推导出某些迭代变化的消失,一个被称为“层次”的约束系统。作为应用,我们重新导出了已知的Aomoto多对数和大量单环费曼积分的解析结构。此外,我们引入了“简单类型”来证明在Picard-Lefschetz公式不适用的退化情况下的层次约束,例如无质量三角形或冰淇淋锥费曼图。我们将我们的发现与迭代变化的“经典”层次结构(来自1960年的s矩阵理论)进行比较,并展示我们的设置如何不仅解释,而且改进了后者。为了做到这一点,我们需要进一步解决费曼动机的几何问题:我们大胆地炸毁以前没有人炸毁的东西。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信